RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

A New Method for Determining the Size of a Synchrotron Radiation Beam in the Focus of a Compound Refractive Lens

PII
10.31857/S0023476123010071-1
DOI
10.31857/S0023476123010071
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
5-10
Abstract
A new method is proposed for determining experimentally the size of a synchrotron radiation beam in the focus of planar compound refractive lenses. The method consists in measuring the angular divergence of radiation after the focus using Bragg diffraction in a perfect crystal during its rotation. This method determines the beam size, which depends only on the focusing properties of the lenses in use, in contrast to other currently applied methods. The efficiency of the proposed approach has been experimentally demonstrated using nanofocusing planar silicon lenses as an example.
Keywords
SYNCHROTRON RADIATION BEAM REFRACTIVE LENSES
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. P. 49. https://doi.org/10.1038/384049a0
  2. 2. Yunkin V., Grigoriev M.V., Kuznetsov S. et al. // Proc. SPIE. 2004. V. 5539. P. 226. https://doi.org/10.1117/12.563253
  3. 3. Snigirev A., Snigireva I., Grigoriev M. et al. // J. Phys.: Conf. Ser. 2009. V. 186. P. 012072. https://doi.org/10.1088/1742-6596/186/1/012072
  4. 4. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
  5. 5. Snigirev A., Snigireva I., Lyubomirskiy M. et al. // Opt. Express. 2014. V. 22. P. 25842. https://doi.org/10.1117/12.2061616
  6. 6. Nazmov V., Reznikova E., Snigirev A. et al. // Microsyst. Technol. 2005. V. 11. P. 292. https://doi.org/10.1007/s00542-004-0435-y
  7. 7. Snigireva I., Polikarpov M., Snigirev A. // Synchrotron Radiat. News. 2022. V. 34. № 6. P. 12. https://doi.org/10.1080/08940886.2021.2022387
  8. 8. Bjorling A., Kalbfleisch S., Kahnt M. et al. // Opt. Express. 2020. V. 28. № 4/17. P. 5069. https://doi.org/10.1364/OE.386068
  9. 9. Schroer C.G., Kuhlmann M., Hunger U.T. et al. // Appl. Phys. Lett. 2003. V. 82. № 9. P. 1485. https://doi.org/10.1063/1.1556960
  10. 10. Sorokovikov M., Zverev D., Yunkin V. et al. // Proc. SPIE. 2021. V. 11837. https://doi.org/10.1117/12.2594815
  11. 11. Кон В.Г. // Письма в ЖЭТФ. 2002. Т. 76. № 10. С. 701.
  12. 12. Кон В.Г. // ЖЭТФ. 2003. Т. 124. № 1. С. 234.
  13. 13. Кон В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исследования. 2009. № 5. С. 32.
  14. 14. Kohn V.G. // J. Synchrotron Radiat. 2018. V. 25. P. 1634. https://doi.org/10.1107/S1600577518012675
  15. 15. Kohn V.G., Folomeshkin M.S. // J. Synchrotron Radiat. 2021. V. 28. P. 419. https://doi.org/10.1107/S1600577520016495
  16. 16. Кон В.Г. // Кристаллография. 2006. Т. 51. № 6. С. 1001.
  17. 17. Authier A. Dynamical Theory of X-ray Diffraction. Oxford University Press, 2001. 661 p.
  18. 18. Kohn V.G., Folomeshkin M.S. // Nanobiotechnol. Rep. 2022. V. 17. № 1. P. 126. https://doi.org/10.1134/S2635167622010086
  19. 19. Kohn V.G. // J. Synchrotron Radiat. 2022. V. 29. P. 615. https://doi.org/10.1107/S1600577522001345
  20. 20. Кон В.Г., Просеков П.А. Серегин А.Ю. и др. // Кристаллография. 2019. Т. 64. № 1. С. 29. https://doi.org/10.1134/S0023476119010144
  21. 21. Press W., Teukolsky S., Vatterling W. et al. Numerical Recipes, The Art of Scientific Computing. Cambridge: Cambridge University Press, 2007. 1256 p.
  22. 22. Snigirev A., Snigireva I., Grigoriev M. et al. // Proc. SPIE. 2007. V. 6705. P. 39. https://doi.org/10.1117/12.733609
  23. 23. Koн B.Г. // http://kohnvict.ucoz.ru/jsp/1-crlpar.htm
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library