- PII
- 10.31857/S0023476123010071-1
- DOI
- 10.31857/S0023476123010071
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 5-10
- Abstract
- A new method is proposed for determining experimentally the size of a synchrotron radiation beam in the focus of planar compound refractive lenses. The method consists in measuring the angular divergence of radiation after the focus using Bragg diffraction in a perfect crystal during its rotation. This method determines the beam size, which depends only on the focusing properties of the lenses in use, in contrast to other currently applied methods. The efficiency of the proposed approach has been experimentally demonstrated using nanofocusing planar silicon lenses as an example.
- Keywords
- SYNCHROTRON RADIATION BEAM REFRACTIVE LENSES
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. P. 49. https://doi.org/10.1038/384049a0
- 2. Yunkin V., Grigoriev M.V., Kuznetsov S. et al. // Proc. SPIE. 2004. V. 5539. P. 226. https://doi.org/10.1117/12.563253
- 3. Snigirev A., Snigireva I., Grigoriev M. et al. // J. Phys.: Conf. Ser. 2009. V. 186. P. 012072. https://doi.org/10.1088/1742-6596/186/1/012072
- 4. Snigirev A., Snigireva I., Kohn V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
- 5. Snigirev A., Snigireva I., Lyubomirskiy M. et al. // Opt. Express. 2014. V. 22. P. 25842. https://doi.org/10.1117/12.2061616
- 6. Nazmov V., Reznikova E., Snigirev A. et al. // Microsyst. Technol. 2005. V. 11. P. 292. https://doi.org/10.1007/s00542-004-0435-y
- 7. Snigireva I., Polikarpov M., Snigirev A. // Synchrotron Radiat. News. 2022. V. 34. № 6. P. 12. https://doi.org/10.1080/08940886.2021.2022387
- 8. Bjorling A., Kalbfleisch S., Kahnt M. et al. // Opt. Express. 2020. V. 28. № 4/17. P. 5069. https://doi.org/10.1364/OE.386068
- 9. Schroer C.G., Kuhlmann M., Hunger U.T. et al. // Appl. Phys. Lett. 2003. V. 82. № 9. P. 1485. https://doi.org/10.1063/1.1556960
- 10. Sorokovikov M., Zverev D., Yunkin V. et al. // Proc. SPIE. 2021. V. 11837. https://doi.org/10.1117/12.2594815
- 11. Кон В.Г. // Письма в ЖЭТФ. 2002. Т. 76. № 10. С. 701.
- 12. Кон В.Г. // ЖЭТФ. 2003. Т. 124. № 1. С. 234.
- 13. Кон В.Г. // Поверхность. Рентген., синхротр. и нейтрон. исследования. 2009. № 5. С. 32.
- 14. Kohn V.G. // J. Synchrotron Radiat. 2018. V. 25. P. 1634. https://doi.org/10.1107/S1600577518012675
- 15. Kohn V.G., Folomeshkin M.S. // J. Synchrotron Radiat. 2021. V. 28. P. 419. https://doi.org/10.1107/S1600577520016495
- 16. Кон В.Г. // Кристаллография. 2006. Т. 51. № 6. С. 1001.
- 17. Authier A. Dynamical Theory of X-ray Diffraction. Oxford University Press, 2001. 661 p.
- 18. Kohn V.G., Folomeshkin M.S. // Nanobiotechnol. Rep. 2022. V. 17. № 1. P. 126. https://doi.org/10.1134/S2635167622010086
- 19. Kohn V.G. // J. Synchrotron Radiat. 2022. V. 29. P. 615. https://doi.org/10.1107/S1600577522001345
- 20. Кон В.Г., Просеков П.А. Серегин А.Ю. и др. // Кристаллография. 2019. Т. 64. № 1. С. 29. https://doi.org/10.1134/S0023476119010144
- 21. Press W., Teukolsky S., Vatterling W. et al. Numerical Recipes, The Art of Scientific Computing. Cambridge: Cambridge University Press, 2007. 1256 p.
- 22. Snigirev A., Snigireva I., Grigoriev M. et al. // Proc. SPIE. 2007. V. 6705. P. 39. https://doi.org/10.1117/12.733609
- 23. Koн B.Г. // http://kohnvict.ucoz.ru/jsp/1-crlpar.htm