- PII
- 10.31857/S0023476123010125-1
- DOI
- 10.31857/S0023476123010125
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 131-137
- Abstract
- KR3F10 (R = Ho, Er; sp. gr. ) crystals have been grown by the vertical directional crystallization. The incongruent melting of these compounds is experimentally established, and the temperatures of the corresponding thermal effects are determined. Narrow regions of homogeneity are found for the studied crystals; these regions are also characteristic of the entire series of KR3F10 crystals under study. The cubic lattice parameter monotonically decreases along the crystal length and varies in the range of 11.5782(2)–11.5654(5) Å for KHo3F10 and 11.5225(1)–11.5102(4) Å for KEr3F10. The conditions for growing KR3F10 crystals of optical quality from melt are optimized.
- Keywords
- GROWTH OF KR3F10 VERTICAL DIRECTIONAL CRYSTALLIZATION METHOD
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Хайдуков Н.М., Филатова Т.Г., Икрами М.Б., Федоров П.П. // Неорган. материалы. 1993. Т. 29. № 7. С. 992.
- 2. Vedrine A., Boutonnet R., Sabatier R., Cousseins J.C. // Bull. Soc. Chim. Fr. Pt. 1. 1975. № 3–4. P. 445.
- 3. Винокуров А.В., Малкин Б.З., Столов А.Л. // ФТТ. 1996. Т. 38. № 3. С. 751.
- 4. Chamberlain S.L., Corruccini L.R. // J. Phys. Chem. Solids. 2006. V. 67. № 4. P. 710. https://doi.org/10.1016/j.jpcs.2005.08.091
- 5. Vasyliev V., Villora E.G., Nakamura M. et al. // Opt. Express. 2012. V. 20. № 12. P. 14460. https://doi.org/10.1364/OE.20.014460
- 6. Yakovlev A., Balabanov S., Permin D. et al. // Opt. Mater. 2020. V. 101. P. 109750. https://doi.org/10.1016/j.optmat.2020.109750
- 7. Karimov D., Buchinskaya I., Sorokin N. // Z. Krist. – Cryst. Mater. 2022. V. 237. № 10–12. P. 429. https://doi.org/10.1515/zkri-2022-0032
- 8. Fangtian Y., Shihua H., Qiufeng S. // J. Rare Earths. 2010. V. 28. № 5. P. 676. https://doi.org/10.1016/S1002-0721 (09)60177-0
- 9. Cao C., Guo S., Moon B.K. et al. // Mater. Chem. Phys. 2013. V. 139. № 2–3. P. 609. https://doi.org/10.1016/j.matchemphys.2013.02.005
- 10. Li Ch., Xu Z., Yang D. et al. // Cryst. Eng. Commun. 2012. V. 14. № 2. P. 670. https://doi.org/10.1039/c1ce06087b
- 11. Müller-Bunz H., Schleid T. // Z. Anorg. Allg. Chem. 2007. B. 633. № 15. S. 2619. https://doi.org/10.1002/zaac.200700329
- 12. Karimov D., Buchinskaya I., Arkharova N. et al. // Crystals. 2021. V. 11. № 3. P. 285. https://doi.org/10.3390/cryst11030285
- 13. Шаймурадов И.Б., Решетникова Л.П., Новоселова А.В. // Изв. АH СССР. Неорган. материалы. 1974. Т. 10. № 8. С. 1468.
- 14. Федоров П.П. // Журн. неорган. химии. 1999. Т. 44. № 11. С. 1791.
- 15. Решетникова Л.П., Шаймурадов И.Б., Новоселова А.В. // Изв. АH СССР. Неорган. материалы. 1979. Т. 15. № 7. С. 1232.
- 16. Aleonard S., Labeau M., Le Fur Y., Gorius M.F. // Mater. Res. Bull. 1973. V. 8. № 6. P. 605. https://doi.org/10.1016/0025-5408 (73)90053-6
- 17. Labeau M., Le Fur Y., Aleonard S. // J. Solid State Chem. 1974. V. 10. № 3. P. 282. https://doi.org/10.1016/0022-4596 (74)90036-x
- 18. Grzechnik A., Khaidukov N., Friese K. // Dalton Trans. 2013. V. 42. № 2. P. 441. https://doi.org/10.1039/C2DT31483E
- 19. Wani B.N., Rao U.R.K. // J. Solid State Chem. 1994. V. 112. № 1. P. 199. https://doi.org/10.1006/jssc.1994.1288
- 20. Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556.