RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

GROWTH OF KR3F10 (R = Tb–Er) COMPOUNDS BY THE VERTICAL DIRECTIONAL CRYSTALLIZATION METHOD. III: MELTING CHARACTER AND NONSTOICHIOMETRY OF CUBIC KHo3F10AND KEr3F10 SINGLE CRYSTALS

PII
10.31857/S0023476123010125-1
DOI
10.31857/S0023476123010125
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
131-137
Abstract
KR3F10 (R = Ho, Er; sp. gr. ) crystals have been grown by the vertical directional crystallization. The incongruent melting of these compounds is experimentally established, and the temperatures of the corresponding thermal effects are determined. Narrow regions of homogeneity are found for the studied crystals; these regions are also characteristic of the entire series of KR3F10 crystals under study. The cubic lattice parameter monotonically decreases along the crystal length and varies in the range of 11.5782(2)–11.5654(5) Å for KHo3F10 and 11.5225(1)–11.5102(4) Å for KEr3F10. The conditions for growing KR3F10 crystals of optical quality from melt are optimized.
Keywords
GROWTH OF KR3F10 VERTICAL DIRECTIONAL CRYSTALLIZATION METHOD
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Хайдуков Н.М., Филатова Т.Г., Икрами М.Б., Федоров П.П. // Неорган. материалы. 1993. Т. 29. № 7. С. 992.
  2. 2. Vedrine A., Boutonnet R., Sabatier R., Cousseins J.C. // Bull. Soc. Chim. Fr. Pt. 1. 1975. № 3–4. P. 445.
  3. 3. Винокуров А.В., Малкин Б.З., Столов А.Л. // ФТТ. 1996. Т. 38. № 3. С. 751.
  4. 4. Chamberlain S.L., Corruccini L.R. // J. Phys. Chem. Solids. 2006. V. 67. № 4. P. 710. https://doi.org/10.1016/j.jpcs.2005.08.091
  5. 5. Vasyliev V., Villora E.G., Nakamura M. et al. // Opt. Express. 2012. V. 20. № 12. P. 14460. https://doi.org/10.1364/OE.20.014460
  6. 6. Yakovlev A., Balabanov S., Permin D. et al. // Opt. Mater. 2020. V. 101. P. 109750. https://doi.org/10.1016/j.optmat.2020.109750
  7. 7. Karimov D., Buchinskaya I., Sorokin N. // Z. Krist. – Cryst. Mater. 2022. V. 237. № 10–12. P. 429. https://doi.org/10.1515/zkri-2022-0032
  8. 8. Fangtian Y., Shihua H., Qiufeng S. // J. Rare Earths. 2010. V. 28. № 5. P. 676. https://doi.org/10.1016/S1002-0721 (09)60177-0
  9. 9. Cao C., Guo S., Moon B.K. et al. // Mater. Chem. Phys. 2013. V. 139. № 2–3. P. 609. https://doi.org/10.1016/j.matchemphys.2013.02.005
  10. 10. Li Ch., Xu Z., Yang D. et al. // Cryst. Eng. Commun. 2012. V. 14. № 2. P. 670. https://doi.org/10.1039/c1ce06087b
  11. 11. Müller-Bunz H., Schleid T. // Z. Anorg. Allg. Chem. 2007. B. 633. № 15. S. 2619. https://doi.org/10.1002/zaac.200700329
  12. 12. Karimov D., Buchinskaya I., Arkharova N. et al. // Crystals. 2021. V. 11. № 3. P. 285. https://doi.org/10.3390/cryst11030285
  13. 13. Шаймурадов И.Б., Решетникова Л.П., Новоселова А.В. // Изв. АH СССР. Неорган. материалы. 1974. Т. 10. № 8. С. 1468.
  14. 14. Федоров П.П. // Журн. неорган. химии. 1999. Т. 44. № 11. С. 1791.
  15. 15. Решетникова Л.П., Шаймурадов И.Б., Новоселова А.В. // Изв. АH СССР. Неорган. материалы. 1979. Т. 15. № 7. С. 1232.
  16. 16. Aleonard S., Labeau M., Le Fur Y., Gorius M.F. // Mater. Res. Bull. 1973. V. 8. № 6. P. 605. https://doi.org/10.1016/0025-5408 (73)90053-6
  17. 17. Labeau M., Le Fur Y., Aleonard S. // J. Solid State Chem. 1974. V. 10. № 3. P. 282. https://doi.org/10.1016/0022-4596 (74)90036-x
  18. 18. Grzechnik A., Khaidukov N., Friese K. // Dalton Trans. 2013. V. 42. № 2. P. 441. https://doi.org/10.1039/C2DT31483E
  19. 19. Wani B.N., Rao U.R.K. // J. Solid State Chem. 1994. V. 112. № 1. P. 199. https://doi.org/10.1006/jssc.1994.1288
  20. 20. Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library