RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

STUDY OF THE FORMATION OF RADIATION-STIMULATED IMPURITY DEFECTS IN CaF2CRYSTALS ACTIVATED BY TRIVALENT RARE-EARTH IONS

PII
10.31857/S0023476123010241-1
DOI
10.31857/S0023476123010241
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
68-76
Abstract
Ionizing radiation gives rise to impurity defects in activated crystals due to the transition of impurity ions from the trivalent to divalent state. An approach is proposed for studying the influence of the energy position of R3+ ions in the energy-band structure of СaF2 crystals on the degree of stability of rare-earth ions in the divalent state as a result of the transition of 4fn electronic states of R3+ → R2+ ions under ionizing irradiation. The processes of direct and reverse photochromism occurring on impurity defects, which are related, respectively, to the coloring of activated crystals under γ irradiation and their bleaching under UV irradiation, have been studied. A mechanism of photochromic transformation taking into account the participation of radiation-induced color centers (CCs) in this process is proposed. The valence transition R3+ → R2+ is considered in terms of photooxidation reaction. The possibilities and conditions of the ion transformation reaction in dependence of the type of ionizing radiation acting on R3+-containing crystals are analyzed based on calculations of the change in the Gibbs energy.
Keywords
RADIATION-STIMULATED IMPURITY DEFECTS RARE-EARTH IONS
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Brandon S., Derby J.J. // J. Cryst. Growth. 1991. V. 110. P. 481.
  2. 2. Siegel R., Howell J.R. // Thermal Radiation Heat Transfer. 2-nd Edition. Washington: Hemispher Publishing Corp., 1981. P. 24.
  3. 3. Сивухин Д.В. Общий курс физики. Оптика. М.: Физматлит. МФТИ, 2002. Т. 4. 792 с.
  4. 4. Юсим В.А. Дис. “Разработка новых принципов выращивания и управления радиационным дефектообразованием в структурах кристаллов фторидов”… канд. техн. наук. Долгопрудный: Переплетофф, 2022. 240 с.
  5. 5. Мельников М.Я., Иванов В.Л. Экспериментальные методы химической кинетики. Фотохимия: Учеб. пособие. М.: Изд-во МГУ, 2004. 125 с.
  6. 6. Ганкин В.Ю., Ганкин Ю.В. Как образуется химическая связь и протекают химические реакции. Институт теоретической химии. М.: Граница, 2007. 323 с.
  7. 7. Thiel C.W., Cruguel H., Wu H. et al. // Phys. Rev B. 2001. V. 64. P. 085107. https://doi.org/10.1103/PhysRevB.64.085107
  8. 8. Родный П.А., Ходюк И.В., Стрыганюк Г.Б. // ФТТ. 2008. Т. 50. Вып. 9. С. 1578.
  9. 9. Pack D.W., Manthey W.J., McClure D.S. // Phys. Rev. B. 1989. V. 40. № 14. P. 9930.
  10. 10. Manthey W.J. // Phys. Rev. B. 1973. V. 8. № 9. P. 4086.
  11. 11. Van Pieterson L., Reid M.F., Burdick G.W., Meijerink A. // Phys. Rev. B. 2002. V. 65. № 4. P. 045114. https://doi.org/10.1103/PhysRevB.65.045114
  12. 12. Loh E. // Phys. Rev. 1967. V. 154. № 2. P. 270.
  13. 13. Cotton S. The Lanthanides – Principles and Energetics Lanthanide and Actinide Chemistry. John Wiley & Sons, Ltd, 2006. P. 9. https://doi.org/10.1002/0470010088
  14. 14. Catlow C.R. // J. Phys. C. 1979. V. 13. № 6. P. 969.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library