- PII
- 10.31857/S0023476123010241-1
- DOI
- 10.31857/S0023476123010241
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 1
- Pages
- 68-76
- Abstract
- Ionizing radiation gives rise to impurity defects in activated crystals due to the transition of impurity ions from the trivalent to divalent state. An approach is proposed for studying the influence of the energy position of R3+ ions in the energy-band structure of СaF2 crystals on the degree of stability of rare-earth ions in the divalent state as a result of the transition of 4fn electronic states of R3+ → R2+ ions under ionizing irradiation. The processes of direct and reverse photochromism occurring on impurity defects, which are related, respectively, to the coloring of activated crystals under γ irradiation and their bleaching under UV irradiation, have been studied. A mechanism of photochromic transformation taking into account the participation of radiation-induced color centers (CCs) in this process is proposed. The valence transition R3+ → R2+ is considered in terms of photooxidation reaction. The possibilities and conditions of the ion transformation reaction in dependence of the type of ionizing radiation acting on R3+-containing crystals are analyzed based on calculations of the change in the Gibbs energy.
- Keywords
- RADIATION-STIMULATED IMPURITY DEFECTS RARE-EARTH IONS
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Brandon S., Derby J.J. // J. Cryst. Growth. 1991. V. 110. P. 481.
- 2. Siegel R., Howell J.R. // Thermal Radiation Heat Transfer. 2-nd Edition. Washington: Hemispher Publishing Corp., 1981. P. 24.
- 3. Сивухин Д.В. Общий курс физики. Оптика. М.: Физматлит. МФТИ, 2002. Т. 4. 792 с.
- 4. Юсим В.А. Дис. “Разработка новых принципов выращивания и управления радиационным дефектообразованием в структурах кристаллов фторидов”… канд. техн. наук. Долгопрудный: Переплетофф, 2022. 240 с.
- 5. Мельников М.Я., Иванов В.Л. Экспериментальные методы химической кинетики. Фотохимия: Учеб. пособие. М.: Изд-во МГУ, 2004. 125 с.
- 6. Ганкин В.Ю., Ганкин Ю.В. Как образуется химическая связь и протекают химические реакции. Институт теоретической химии. М.: Граница, 2007. 323 с.
- 7. Thiel C.W., Cruguel H., Wu H. et al. // Phys. Rev B. 2001. V. 64. P. 085107. https://doi.org/10.1103/PhysRevB.64.085107
- 8. Родный П.А., Ходюк И.В., Стрыганюк Г.Б. // ФТТ. 2008. Т. 50. Вып. 9. С. 1578.
- 9. Pack D.W., Manthey W.J., McClure D.S. // Phys. Rev. B. 1989. V. 40. № 14. P. 9930.
- 10. Manthey W.J. // Phys. Rev. B. 1973. V. 8. № 9. P. 4086.
- 11. Van Pieterson L., Reid M.F., Burdick G.W., Meijerink A. // Phys. Rev. B. 2002. V. 65. № 4. P. 045114. https://doi.org/10.1103/PhysRevB.65.045114
- 12. Loh E. // Phys. Rev. 1967. V. 154. № 2. P. 270.
- 13. Cotton S. The Lanthanides – Principles and Energetics Lanthanide and Actinide Chemistry. John Wiley & Sons, Ltd, 2006. P. 9. https://doi.org/10.1002/0470010088
- 14. Catlow C.R. // J. Phys. C. 1979. V. 13. № 6. P. 969.