- PII
- 10.31857/S0023476123020121-1
- DOI
- 10.31857/S0023476123020121
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 2
- Pages
- 298-305
- Abstract
- Nanostructured submicron calcium carbonate particles with sizes of 500 ± 90 and 172 ± 75 nm have been synthesized by mass crystallization in aqueous solutions with addition of glycerol, as well as a mixture of polyethylene glycol, polysorbate, and a cellular medium. CaCO3 : Si : Fe nanoparticles 65 ± 15 nm in size have been obtained by template synthesis in pores of silica particles. The crystal structure and polymorphism of these particles are studied, and the influence of the size and structure of particles on the efficiency of their loading with a chemotherapy agent , as well as its release under model conditions at different рН, is determined.
- Keywords
- Date of publication
- 14.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 4
References
- 1. Danhier F., Feron O., Préat V. // J. Control. Release. 2010. V. 148. № 2. P. 135. https://doi.org/10.1016/j.jconrel.2010.08.027
- 2. Matsumura Y., Maeda H. // Cancer Res. 1986. V. 46. P. 6387.
- 3. Pérez-Herrero E., Fernández-Medarde A. // Eur. J. Pharm. Biopharm. 2015. V. 93. P. 52. https://doi.org/10.1016/j.ejpb.2015.03.018
- 4. Rodrigues C.F., Alves C.G., Lima-Sousa R. et al. // Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Elsevier. 2020. P. 283. https://doi.org/10.1016/B978-0-12-819666-3.00010-9
- 5. Parra Nieto J., Del Cid M.A.G., de Cárcer I.A. et al. // Biotechnol. J. 2021. V. 16. № 2. P. 2000150. https://doi.org/10.1002/biot.202000150
- 6. Danhier F. // J. Control. Release. 2016. V. 244. P. 108. https://doi.org/10.1016/j.jconrel.2016.11.015
- 7. Rosenblum D., Joshi N., Tao W. et al. // Nat. Commun. 2018. V. 9. № 1. P. 1. https://doi.org/10.1038/s41467-018-03705-y
- 8. Nichols J.W., Bae Y.H. // J. Control. Release. 2014. V. 190. P. 451. https://doi.org/10.1016/j.jconrel.2014.03.057
- 9. Wilhelm S., Tavares A.J., Dai Q. et al. // Nat. Rev. Mater. 2016. V. 1. P. 1. https://doi.org/10.1038/natrevmats.2016.14
- 10. Reshetnyak Y.K. // Clin. Cancer Res. 2015. V. 21. № 20. P. 4502. https://doi.org/10.1158/1078-0432.CCR-15-1502
- 11. Nakamura J., Poologasundarampillai G., Jones J.R. et al. // J. Mater. Chem. B. 2013. V. 1. № 35. P. 4446. https://doi.org/10.1039/C3TB20589D
- 12. Maleki Dizaj S., Sharifi S., Ahmadian E. et al. // Expert Opin. Drug Deliv. 2019. V. 16. № 4. P. 331. https://doi.org/10.1080/17425247.2019.1587408
- 13. Zhang Y., Cai L., Li D. et al. // Nano Res. 2018. V. 11. № 9. P. 4806. https://doi.org/10.1007/s12274-018-2066-0
- 14. Sudareva N.N., Popryadukhin P.V., Saprykina N.N. et al. // Cell. Ther. Transplant. 2020. V. 9. № 2. P. 13. https://doi.org/10.18620/ctt-1866-8836-2020-9-2-13-19
- 15. Fu J., Leo C.P., Show P.L. // Biochem. Eng. J. 2022. P. 108446. https://doi.org/10.1016/j.bej.2022.108446
- 16. Trushina D.B., Borodina T.N., Belyakov S. et al. // Mater. Today Adv. 2022. V. 14. № 2022. P. 100214. https://doi.org/10.1016/j.mtadv.2022.100214
- 17. Qiu N., Yin H., Ji B. et al. // Mater. Sci. Eng. C. 2012. V. 32. № 8. P. 2634. https://doi.org/10.1016/j.msec.2012.08.026
- 18. Liu S.S., Liu L.J., Xiao L.Y. et al. // J. Mater. Chem. B. 2015. V. 3. № 42. P. 8314. https://doi.org/10.1039/C5TB01692D
- 19. Trushina D.B., Bukreeva T.V., Antipina M.N. // Cryst. Growth Des. 2016. V. 16. № 3. P. 1311. https://doi.org/10.1021/acs.cgd.5b01422
- 20. Wang A., Yang Y., Zhang X. et al. // Chempluschem. 2016. V. 81. № 2. P. 194. https://doi.org/10.1002/cplu.201500515
- 21. Choukrani G., Maharjan B., Park C.H. et al. // Mater. Sci. Eng. C. 2020. V. 106. P. 110226. https://doi.org/10.1016/j.msec.2019.110226
- 22. Som A., Raliya R., Tian L. et al. // Nanoscale. Royal Soc. Chem. 2016. V. 8. № 25. P. 12639. https://doi.org/10.1039/C5NR06162H
- 23. Som A., Raliya R., Paranandi K. et al. // Nanomedicine. 2019. V. 14. № 2. P. 169. https://doi.org/10.2217/nnm-2018-0302
- 24. Lam S.F., Bishop K.W., Mintz R. et al. // Sci. Rep. 2021. V. 11. № 1. P. 9246. https://doi.org/10.1038/s41598-021-88687-6
- 25. Popova V., Poletaeva Y., Pyshnaya I. et al. // Nanomaterials. 2021. V. 11. № 11. P. 2794. https://doi.org/10.3390/nano11112794
- 26. Eurov D.A., Kurdyukov D.A., Boitsov V.M. et al. // Microporous Mesoporous Mater. 2022. V. 333. P. 111762. https://doi.org/10.1016/j.micromeso.2022.111762
- 27. Trofimova E.Y., Kurdyukov D.A., Yakovlev S.A. et al. // Nanotechnology. 2013. V. 24. № 15. P. 155601. https://doi.org/10.1088/0957-4484/24/15/155601
- 28. Kamhi S.R. // Acta Cryst. 1963. V. 16. № 8. P. 770. https://doi.org/10.1107/S0365110X63002000
- 29. Pokroy B., Kabalah-Amitai L., Polishchuk I. et al. // Chem. Mater. 2015. V. 27. № 19. P. 6516. https://doi.org/10.1021/acs.chemmater.5b01542
- 30. Bragg W.L. // Proc. R. Soc. London. A. 1914. V. 89. № 613. P. 468. https://doi.org/10.1098/rspa.1914.0015
- 31. Трушина Д.Б., Бородина Т.Н., Сульянов С.Н. и др. // Кристаллография. 2018. Т. 63. № 6. С. 956. https://doi.org/10.1134/S0023476118060309
- 32. Borodina T., Marchenko I., Trushina D. et al. // J. Pharm. Pharmacol. 2018. V. 70. P. 1164. https://doi.org/10.1111/jphp.12958
- 33. Borodina T.N., Trushina D.B., Marchenko I.V. et al. // BioNanoSci. 2016. V. 6. № 3. P. 261. https://doi.org/10.1007/s12668-016-0212-2