RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

LUMINESCENCE OF TWO-DIMENSIONAL ZnO NANOSTRUCTURES: NANOWALLS, NANOSHEETS, NANOCOMBS

PII
10.31857/S0023476123020194-1
DOI
10.31857/S0023476123020194
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 2
Pages
281-284
Abstract
Preliminary comparative studies of the photoluminescent properties of two-dimensional ZnO nanostructures with morphology of nanowalls, nanosheets, and nanocombs, fabricated by gas-transport synthesis, have been performed. All structures exhibited near-band-edge (NBE) UV emission of the same order of intensity. Unlike nanocombs, whose spectrum contains a comparatively strong green luminescence band, nanowalls and nanosheets are characterized by a large ratio of the UV and visible components. This distinction is presumably due to the difference in the mechanisms of structure formation: nanowalls and nanosheets are formed according to the vapor–liquid–solid mechanism, whereas nanocombs grow according to the vapor–solid mechanism
Keywords
LUMINESCENCE TWO-DIMENSIONAL ZnO NANOSTRUCTURES
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Leonardi S.G. // Chemosensors. 2017. V. 5 (2). P. 17. https://doi.org/10.3390/chemosensors5020017
  2. 2. Pellegrino D., Franzò G., Strano V. et al. // Chemosensors. 2019. V. 7 (2). P. 18. https://doi.org/10.3390/chemosensors7020018
  3. 3. Verma A., Chaudhary P., Tripathi R.K., Yadav B.C. // Sens. Actuators A: Phys. 2021. V. 321. P. 112600. https://doi.org/10.1016/j.sna.2021.112600
  4. 4. Ополченцев А.М., Задорожная Л.А., Брискина Ч.М. и др. // Оптика и спектроскопия. 2018. Т. 125. С. 501. https://doi.org/10.21883/OS.2018.10.46702.142-18
  5. 5. Tarasov A.P., Briskina Ch.M., Markushev V.M. et al. // Opt. Mater. 2020. V. 102. P. 109823. https://doi.org/10.1016/j.optmat.2020.109823
  6. 6. Xie J.Q., Dong J.W., Osinsky A. et al. // MRS Online Proceedings Library. 2005. V. 891. P. 1001. https://doi.org/10.1557/proc-0891-ee10-01
  7. 7. Muslimov A.E., Tarasov A.P., Kanevsky V.M. // Materials. 2022. V. 15. P. 6409. https://doi.org/10.3390/ma15186409
  8. 8. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  9. 9. Тарасов А.П., Набатов Б.В., Задорожная Л.А. и др. // Кристаллография. 2022. Т. 67. № 6. С. 943. https://doi.org/10.31857/S0023476122060261
  10. 10. Čížek J., Valenta J., Hruška P. et al. // Appl. Phys. Lett. 2015. V. 106 (25). P. 251902. https://doi.org/10.1063/1.4922944
  11. 11. Bandopadhyay K., Mitra J. // RSC Adv. 2015. V. 5 (30). P. 23540. https://doi.org/10.1039/C5RA00355E
  12. 12. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. материалы. 2007. Т. 43. С. 301.
  13. 13. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. материалы. 2009. Т. 45. Вып. 11. С. 1330.
  14. 14. Kim H.J., Sung K., An K.S. et al. // J. Mater. Chem. 2004. V. 14. P. 3396. https://doi.org/10.1039/B409890K
  15. 15. Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library