ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Сравнение численного и аналитического расчетов функции разрешения порошкового нейтронного дифрактометра

Код статьи
10.31857/S0023476123600209-1
DOI
10.31857/S0023476123600209
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 4
Страницы
637-643
Аннотация
Для дифрактометра высокой светосилы, создаваемого для реактора ПИК (Гатчина), выполнены расчеты разрешения как численно, так и аналитически. Эти два подхода дали разные результаты. При численном расчете все траектории нейтронов ограничены геометрией оптических элементов. Поэтому дифракционный профиль имеет форму трапеции, что хорошо видно при больших углах дифракции. Аналитические формулы предполагают гауссовый профиль линии. Различие профилей приводит к различию кривых разрешения, рассчитанных численно и аналитически. Это различие особенно заметно для дифрактометров со средним и низким разрешением, оптимизированных на максимальную светосилу.
Ключевые слова
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Ковальчук М.В., Воронин В.В., Гаврилов С.В. и др. // Кристаллография. 2022. Т. 67. № 5. С.785. https://doi.org/10.31857/S0023476122050095
  2. 2. Caglioti G., Paolioti A., Ricci F.P. // Nucl. Instrum. Methods. 1958. V. 3. P. 223. https://doi.org/10.1016/0369-643X (58)90029-X
  3. 3. Popovici M. // Nucl. Instrum. Methods. 1965. V. 36. P. 179. https://doi.org/10.1016/0029-554X (65)90422-2
  4. 4. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М.: Высшая школа, 1999. 695 с.
  5. 5. Cooper M.J., Nathans R. // Acta Cryst. 1967. V. 23 (3). P. 357. https://doi.org/10.1107/S0365110X67002816
  6. 6. Bobrovskii V.I., Zhdakhin I.L. // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2007. V. 1 (4). P. 72. https://doi.org/10.1134/S102745100704012X
  7. 7. Hewat A.W. // Nucl. Instrum. Methods. 1975. V. 127. P. 361. https://doi.org/10.1016/S0029-554X (75)80006-1
  8. 8. Leo D. Cussen // Nucl. Instrum. Methods. 2016. V. 821. P. 122. https://doi.org/10.1016/j.nima.2016.03.052
  9. 9. Балагуров А.М., Голосовский И.В., Курбаков А.И. и др. // Дифрактометры на реакторе ПИК для решения фундаментальных и прикладных задач. РНСИ-КС, устные доклады. 2014. С. 50.
  10. 10. Puente-Orench I., Clergeau J.F., Martínez S. et al. // J. Phys.: Conf. Ser. 2014. V. 549. P. 012003. https://doi.org/10.1088/1742-6596/549/1/012003
  11. 11. Hansen T.C., Henry P.F., Fischer H.E. et al. // Meas. Sci. Technol. 2008. V. 19. P. 034001. https://doi.org/10.1088/0957-0233/19/3/034001
  12. 12. Suard E., Hewat A. // Scientific Review: The Super-D2B project at the ILL. Neutron News, 2001. V. 12 (4). P. 30. https://doi.org/10.1080/10448630108245006
  13. 13. Fischer P., Frey G., Koch M. et al. // Physica B. 2000. V. 276–278. P. 146. https://doi.org/10.1016/S0921-4526 (99)01399-X
  14. 14. Fischer P., Keller L., Schefer J. et al. // Neutron News. 2000. V. 11 (3). P. 19. https://doi.org/10.1080/10448630008233743
  15. 15. Avdeev M., Hester J.R., Peterson V.K. et al. // Neutron News. 2009. V. 20 (4). P. 29. https://doi.org/10.1080/10448630903241100
  16. 16. Studer A.J., Hagen M.E., Noakes T.J. // Physica B. 2006. V. 385–386. P. 1013. https://doi.org/10.1016/j.physb.2006.05.323
  17. 17. Loopstra B.O. // Nucl. Instrum. Methods. 1966. V. 44. P. 181. https://doi.org/10.1016/0029-554X (66)90149-2
  18. 18. Kibalin I.A., Gukasov A. // Phys. Rev. Res. 2019. № 1. 033100. https://doi.org/10.1103/PhysRevResearch.1.033100
  19. 19. Gukasov A., Brown P.J. // J. Phys.: Condens. Matter. 2010. V. 22. P. 502201. https://doi.org/10.1088/0953-8984/22/50/502201
  20. 20. Wright A.F., Berneron M., Heathman S.P. // Nucl. Instrum. Methods. 1981. V. 180. P. 650. https://doi.org/10.1016/0029-554X (81)90113-0
  21. 21. Stone M.B., Niedziela J.L., Loguillo M.J. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 085101. https://doi.org/10.1063/1.4891302
  22. 22. Wannberg A., Mellergard A., Zetterstrom P. et al. // Neutron Research. 1999. V. 8. P. 133. https://doi.org/10.1080/10238169908200050
  23. 23. Кибалин Ю.А., Голосовский И.В., Филимонов А.В. // Научно-технические ведомости СПбГПУ. 2008. Т. 56. С. 116. https://elibrary.ru/item.asp?id=12802818
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека