RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

COMPARISON OF THE NUMERICAL AND ANALYTICAL CALCULATIONS OF THE RESOLUTION FUNCTION FOR A POWDER NEUTRON DIFFRACTOMETER

PII
10.31857/S0023476123600209-1
DOI
10.31857/S0023476123600209
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
637-643
Abstract
The resolution of the high-intensity diffractometer, developed for the PIK reactor (Gatchina), is calculated both numerically and analytically. These two approaches give different results. All neutron trajectories calculated numerically are limited by the geometry of optical elements. Therefore, the diffraction profile has a trapezoidal shape, which can be seen well at large diffraction angles. Analytical formulas yield a Gaussian line profile. The difference in profiles leads to a difference in the resolution curves calculated numerically and analytically. This difference is especially pronounced for the diffractometers with medium and low resolution, optimized to the maximum intensity.
Keywords
POWDER NEUTRON DIFFRACTOMETER RESOLUTION FUNCTION
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Ковальчук М.В., Воронин В.В., Гаврилов С.В. и др. // Кристаллография. 2022. Т. 67. № 5. С.785. https://doi.org/10.31857/S0023476122050095
  2. 2. Caglioti G., Paolioti A., Ricci F.P. // Nucl. Instrum. Methods. 1958. V. 3. P. 223. https://doi.org/10.1016/0369-643X (58)90029-X
  3. 3. Popovici M. // Nucl. Instrum. Methods. 1965. V. 36. P. 179. https://doi.org/10.1016/0029-554X (65)90422-2
  4. 4. Архипов Г.И., Садовничий В.А., Чубариков В.Н. Лекции по математическому анализу. М.: Высшая школа, 1999. 695 с.
  5. 5. Cooper M.J., Nathans R. // Acta Cryst. 1967. V. 23 (3). P. 357. https://doi.org/10.1107/S0365110X67002816
  6. 6. Bobrovskii V.I., Zhdakhin I.L. // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2007. V. 1 (4). P. 72. https://doi.org/10.1134/S102745100704012X
  7. 7. Hewat A.W. // Nucl. Instrum. Methods. 1975. V. 127. P. 361. https://doi.org/10.1016/S0029-554X (75)80006-1
  8. 8. Leo D. Cussen // Nucl. Instrum. Methods. 2016. V. 821. P. 122. https://doi.org/10.1016/j.nima.2016.03.052
  9. 9. Балагуров А.М., Голосовский И.В., Курбаков А.И. и др. // Дифрактометры на реакторе ПИК для решения фундаментальных и прикладных задач. РНСИ-КС, устные доклады. 2014. С. 50.
  10. 10. Puente-Orench I., Clergeau J.F., Martínez S. et al. // J. Phys.: Conf. Ser. 2014. V. 549. P. 012003. https://doi.org/10.1088/1742-6596/549/1/012003
  11. 11. Hansen T.C., Henry P.F., Fischer H.E. et al. // Meas. Sci. Technol. 2008. V. 19. P. 034001. https://doi.org/10.1088/0957-0233/19/3/034001
  12. 12. Suard E., Hewat A. // Scientific Review: The Super-D2B project at the ILL. Neutron News, 2001. V. 12 (4). P. 30. https://doi.org/10.1080/10448630108245006
  13. 13. Fischer P., Frey G., Koch M. et al. // Physica B. 2000. V. 276–278. P. 146. https://doi.org/10.1016/S0921-4526 (99)01399-X
  14. 14. Fischer P., Keller L., Schefer J. et al. // Neutron News. 2000. V. 11 (3). P. 19. https://doi.org/10.1080/10448630008233743
  15. 15. Avdeev M., Hester J.R., Peterson V.K. et al. // Neutron News. 2009. V. 20 (4). P. 29. https://doi.org/10.1080/10448630903241100
  16. 16. Studer A.J., Hagen M.E., Noakes T.J. // Physica B. 2006. V. 385–386. P. 1013. https://doi.org/10.1016/j.physb.2006.05.323
  17. 17. Loopstra B.O. // Nucl. Instrum. Methods. 1966. V. 44. P. 181. https://doi.org/10.1016/0029-554X (66)90149-2
  18. 18. Kibalin I.A., Gukasov A. // Phys. Rev. Res. 2019. № 1. 033100. https://doi.org/10.1103/PhysRevResearch.1.033100
  19. 19. Gukasov A., Brown P.J. // J. Phys.: Condens. Matter. 2010. V. 22. P. 502201. https://doi.org/10.1088/0953-8984/22/50/502201
  20. 20. Wright A.F., Berneron M., Heathman S.P. // Nucl. Instrum. Methods. 1981. V. 180. P. 650. https://doi.org/10.1016/0029-554X (81)90113-0
  21. 21. Stone M.B., Niedziela J.L., Loguillo M.J. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 085101. https://doi.org/10.1063/1.4891302
  22. 22. Wannberg A., Mellergard A., Zetterstrom P. et al. // Neutron Research. 1999. V. 8. P. 133. https://doi.org/10.1080/10238169908200050
  23. 23. Кибалин Ю.А., Голосовский И.В., Филимонов А.В. // Научно-технические ведомости СПбГПУ. 2008. Т. 56. С. 116. https://elibrary.ru/item.asp?id=12802818
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library