- PII
- 10.31857/S0023476123600246-1
- DOI
- 10.31857/S0023476123600246
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 4
- Pages
- 546-565
- Abstract
- Structural classes of the crystal structures consisting of mutually parallel chains of structural units (polymers) and constructed due to the sole bearing contact between polymer chains have been derived. In total, 43 structure classes have been found. Nets of bearing contacts in these classes belong to topological types sql, hxl, hcb, kgm, kgd, 2,4L2 and some other types of nets with doubly coordinated vertices. Examples of crystal structures of inorganic and organic polymers are presented.
- Keywords
- STRUCTURAL CLASSES CRYSTAL SRTUCTURE CRYSTALLOGRAPHIC SYMMETRY
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 16
References
- 1. Lloyd S. // IEEE Control Syst. Mag. 2001. V. 21. P. 7. https://doi.org/10.1109/MCS.2001.939938
- 2. Krivovichev S.V. // Angew. Chem. Int. Ed. 2014. V. 53. P. 654. https://doi.org/10.1002/anie.201304374
- 3. Hornfeck W. // Acta Cryst. A. 2020. V. 76. P. 534. https://doi.org/10.1107/S2053273320006634
- 4. Kaußler C., Kieslich G. // J. Appl. Cryst. 2021. V. 54. P. 306. https://doi.org/10.1107/s1600576720016386
- 5. Banaru A.M., Aksenov S.M., Krivovichev S.V. // Symmetry (Basel). 2021. V. 13. P. 1399. https://doi.org/10.3390/sym13081399
- 6. Krivovichev S.V. // Crystallogr. Rev. 2017. V. 23. P. 2. https://doi.org/10.1080/0889311X.2016.1220002
- 7. Krivovichev S.V. // Mineral. Mag. 2014. V. 78. P. 415. https://doi.org/10.1180/minmag.2014.078.2.12
- 8. Zefirov Y.V., Zorky P.M. // Russ. Chem. Rev. 1995. V. 64. P. 415. https://doi.org/10.1070/rc1995v064n05abeh000157
- 9. Ismiev A.I., Potekhin K.A., Maleev A.V. et al. // J. Struct. Chem. 2018. V. 59. P. 1911. https://doi.org/10.1134/S0022476618080206
- 10. Ismiyev A.I., Potekhin K.A., Maleev A.V. et al. // J. Struct. Chem. 2019. V. 60. P. 485. https://doi.org/10.1134/S0022476619030181
- 11. Ismiev A.I., Potekhin K.A., Maleev A.V., Maharra-mov A.M. // J. Struct. Chem. 2019. V. 60. P. 1896. https://doi.org/10.1134/S0022476619120059
- 12. Maleev A.V., Gevorgyan A.A., Potekhin K.A. // J. Struct. Chem. 2018. V. 59. P. 455. https://doi.org/10.1134/S0022476618020294
- 13. Banaru A.M. // Moscow Univ. Chem. Bull. 2019. V. 74. P. 101. https://doi.org/10.3103/S0027131419030039
- 14. Делоне Б.Н., Долбилин Н.П., Штогрин М.И., Галиулин Р.В. // Докл. АН СССР. Серия математическая. 1976. Т. 227. С. 19.
- 15. Galiulin R.V. // Comp. Math. Math. Phys. 2003. V. 43. P. 754.
- 16. Baburin I.A., Bouniaev M., Dolbilin N. et al. // Acta Cryst. A. 2018. V. 74. P. 616. https://doi.org/10.1107/s2053273318012135
- 17. Dolbilin N. // Struct. Chem. 2016. V. 27. P. 1725. https://doi.org/10.1007/s11224-016-0832-8
- 18. Blatov V.A. // Crystallogr. Rev. 2004. V. 10. P. 249. https://doi.org/10.1080/08893110412331323170
- 19. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
- 20. Shevchenko A.P., Shabalin A.A., Karpukhin I.Y., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. P. 250. https://doi.org/10.1080/27660400.2022.2088041
- 21. Banaru A.M., Gridin D.M. // Moscow Univ. Chem. Bull. 2019. V. 74. P. 265. https://doi.org/10.3103/S0027131419060051
- 22. Banaru A.M., Gridin D.M. // J. Struct. Chem. 2019. V. 60. P. 1885. https://doi.org/10.1134/S0022476619120047
- 23. Gridin D.M., Banaru A.M. // Moscow Univ. Chem. Bull. 2020. V. 75. P. 354. https://doi.org/10.3103/S0027131420060115
- 24. Gridin D.M., Banaru A.M. // J. Struct. Chem. 2020. V. 61. P. 742. https://doi.org/10.1134/S0022476620050108
- 25. Banaru A.M., Banaru D.A. // J. Struct. Chem. 2020. V. 61. P. 1485. https://doi.org/10.1134/S0022476620100017
- 26. Serezhkin V.N., Shevchenko A.P., Serezhkina L.B., Prokaeva M.A. // Russ. J. Phys. Chem. 2005. V. 79. P. 1070
- 27. Ivanov V.V., Talanov V.M. // Crystallographe Reports. 2010. V. 55. P. 362. https://doi.org/10.1134/S1063774510030028
- 28. Talanov V.M., Ivanov V.V. // Russ. J. Gen. Chem. 2013. V. 83. P. 2225. https://doi.org/10.1134/S1070363213120013
- 29. Nespolo M., Souvignier B., Stöger B. // Acta Cryst. A. 2020. V. 76. P. 334. https://doi.org/10.1107/S2053273320000650
- 30. Talis A.L., Rabinovich A.L. // Crystallography Reports. 2019. V. 64. P. 367. https://doi.org/10.1134/S106377451903026X
- 31. Talis A.L., Everstov A.A., Kraposhin V.S., Simich-Lafitskii N.D. // Met. Sci. Heat Treat. 2021. V. 62. P. 725. https://doi.org/10.1007/s11041-021-00629-1
- 32. Talis A.L., Kraposhin V.S., Everstov A.A. // Met. Sci. Heat Treat. 2022. V. 64. P. 338. https://doi.org/10.1007/s11041-022-00811-z
- 33. van Eijck B.P., Kroon J. // Acta Cryst. B. 2000. V. 56. P. 535. https://doi.org/10.1107/S0108768100000276
- 34. Banaru A.M. // Moscow Univ. Chem. Bull. 2009. V. 64. P. 80. https://doi.org/10.3103/S0027131409020023
- 35. Belsky V.K., Zorky P.M. // Acta Cryst. A. 1977. V. 33. P. 1004. https://doi.org/10.1107/S0567739477002393
- 36. Banaru A.M., Aksenov S.M., Banaru D.A. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 325. https://doi.org/10.3103/S0027131421050023
- 37. Banaru A.M., Bond A.D., Aksenov S.M., Banaru D.A. // Z. Krist. 2022. V. 237. P. 271. https://doi.org/10.1515/zkri-2022-0017
- 38. Tschierske C., Nürnberger C., Ebert H. et al. // Interface Focus. 2011. V. 2. P. 669. https://doi.org/10.1098/rsfs.2011.0087
- 39. Tschierske C. // Isr. J. Chem. 2012. V. 52. P. 935. https://doi.org/https://doi.org/10.1002/ijch.201200053
- 40. Tschierske C. // Angew. Chem. Int. Ed. 2013. V. 52. P. 8828. https://doi.org/https://doi.org/10.1002/anie.201300872
- 41. Zhuravlev V.G. // St. Petersbg. Math. J. 2002. V. 13. P. 201.
- 42. Zhuravlev V.G., Maleev A.V., Rau V.G., Shutov A.V. // Crystallography Reports. 2002. V. 47. P. 907. https://doi.org/10.1134/1.1523512
- 43. Shutov A.V. // J. Math. Sci. 2005. V. 129. P. 3922. https://doi.org/10.1007/s10958-005-0329-2
- 44. Shutov A., Maleev A. // Z. Kristallogr. Cryst. Mater. 2019. V. 234. P. 291. https://doi.org/doi:10.1515/zkri-2018-2144
- 45. Shutov A., Maleev A. // Z. Kristallogr. Cryst. Mater. 2020. V. 235. P. 157. https://doi.org/doi:10.1515/zkri-2020-0002
- 46. Goodman-Strauss C., Sloane N.J.A. // Acta Cryst. A. 2019. V. 75. P. 121. https://doi.org/10.1107/S2053273318014481
- 47. Grigorchuk R., Kravaris C. // Acta Cryst. A. 2022. V. 78. P. 371. https://doi.org/10.1107/S2053273322005058
- 48. Rau V.G. // Crystallography Reports. 2000. V. 45. P. 199. https://doi.org/10.1134/1.171162
- 49. Maleev A.V. // Crystallography Reports. 2001. V. 46. P. 154. https://doi.org/10.1134/1.1343145
- 50. Maleev A.V. // Crystallography Reports. 2013. V. 58. P. 760. https://doi.org/10.1134/S1063774513040135
- 51. Banaru A.M. // Crystallography Reports. 2018. V. 63. P. 1071. https://doi.org/10.1134/S1063774518070040
- 52. Evers J., Beck W., Göbel M. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 5677. https://doi.org/https://doi.org/10.1002/anie.201000680
- 53. Ďurovič S., Hybler J. // Z. Kristallogr. Cryst. Mater. 2006. V. 221. P. 63. https://doi.org/10.1524/zkri.2006.221.1.63
- 54. O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. V. 41. P. 1782. https://doi.org/10.1021/ar800124u
- 55. Huan T.D., Ramprasad R. // J. Phys. Chem. Lett. 2020. V. 11. P. 5823. https://doi.org/10.1021/acs.jpclett.0c01553
- 56. Kleis J., Lundqvist B.I., Langreth D.C., Schröder E. // Phys. Rev. B. 2007. V. 76. P. 100201. https://doi.org/10.1103/PhysRevB.76.100201
- 57. Aroyo M.I., Perez-Mato J.M., Orobengoa D. et al. // Bulg. Chem. Commun. 2011. V. 43. P. 183.
- 58. Китайгородский А.И. Органическая кристаллохимия. М.: Изд-во АН СССР, 1955. 558 с.
- 59. Klee W.E. // Cryst. Res. Technol. 2004. V. 39. P. 959. https://doi.org/10.1002/crat.200410281