RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

MICROSTRUCTURE OF A CrSi2 TRANSITION LAYER PRODUCED BY HOT PRESSING OF Cr AND Si

PII
10.31857/S002347612360026X-1
DOI
10.31857/S002347612360026X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
615-620
Abstract
Hot pressing of a Si single crystal in the bulk of electrolytic Cr powder at 1213 K, with subsequent annealing in air, leads to the formation of an intermediate polycrystalline silicide layer at the interface between the initial components. The phase composition and microstructure of the transition layer and its vicinity were investigated by scanning electron microscopy, X-ray energy-dispersive microanalysis, and electron backscatter diffraction. The transition layer has a crystal structure of the hexagonal phase of chromium disilicide (sp. gr. P6222). An additional annealing up to 120 h leads to insignificant recrystallization of small grains into larger ones.
Keywords
ULTRAFAST MAGNETIC DYNAMICS Co/Pt MULTILAYER STRUCTURES
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Burkov A.T., Ivanov Y.I. // Silicide Thermoelectrics. In Advanced Thermoelectric Materials / Ed. Park C.R. 2019. V. 165.
  2. 2. Gel’d P.V., Sidorenko F.A. // Silicides of Transition Metals of the Fourth Period. M.: Metallurgiya, 1971. P. 90.
  3. 3. Gokhale A.B., Abbaschian G.J. // J. Phase Equilibria. 1987. V. 8. P. 474. https://doi.org/10.1007/BF02893156
  4. 4. Okamoto H. // J. Phase Equilibria. 2001. V. 22 P. 593. https://doi.org/10.1361/105497101770332866
  5. 5. Boren B. // Archive Chem., Mineral. Geol. 1933. V. 11. P. 1.
  6. 6. Dauben C.H., Templeton D.H., Myers C.E. // J. Phys. Chem. 1956. V. 60. P. 443. https://doi.org/10.1021/j150538a015
  7. 7. Tanaka K., Nawata K., Koiwa M. et al. // Mat. Res. Soc. Symp. Proc. 2001. V. 646. P. 4.3.1.
  8. 8. Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К. и др. // ЖТФ. 2011. Т. 81. № 2. С. 147.
  9. 9. Соломкин Ф.Ю., Зайцев В.К., Новиков С.В. и др. // ЖТФ. 2013. Т. 83. № 2. С. 141.
  10. 10. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 1. С. 152.
  11. 11. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 5. С. 157.
  12. 12. Fedorov M., Zaitsev V. // Thermoelectrics Handbook: Macro to Nano / Ed. Rowe D.M. N.Y.: CRC press, 2006. P. 31.
  13. 13. Burkov A., Vinzelberg H., Schumann J. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 7903.
  14. 14. Novikov S.V., Burkov A.T., Schumann J. // J. Electron. Mater. 2014. V. 43. № 6. P. 2420.
  15. 15. Novikov S.V., Burkov A.T., Schumann J. // J. Alloys Compd. 2013. V. 557. P. 239.
  16. 16. Hielscher R., Schaeben C. // J. Appl. Cryst. 2008. V. 41. P. 1024.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library