ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Микроструктура переходного слоя CrSi2, полученного методом горячего прессования Cr и Si

Код статьи
10.31857/S002347612360026X-1
DOI
10.31857/S002347612360026X
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 4
Страницы
615-620
Аннотация
В процессе горячего прессования при 1213 К и последующего отжига на воздухе монокристалла Si в объеме электролитического порошка Cr на границе раздела исходных компонентов происходит формирование промежуточного поликристаллического слоя силицида. Фазовый состав и микроструктура переходного слоя и его окрестностей исследовались методами растровой электронной микроскопии, рентгеновского энерго-дисперсионного микроанализа и дифракции обратно рассеянных электронов. Переходный слой имеет кристаллическую структуру гексагональной фазы дисилицида хрома (пр. гр. P6222). Дополнительный отжиг до 120 ч приводит к незначительной рекристаллизации мелких зерен в более крупные.
Ключевые слова
Дата публикации
15.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Burkov A.T., Ivanov Y.I. // Silicide Thermoelectrics. In Advanced Thermoelectric Materials / Ed. Park C.R. 2019. V. 165.
  2. 2. Gel’d P.V., Sidorenko F.A. // Silicides of Transition Metals of the Fourth Period. M.: Metallurgiya, 1971. P. 90.
  3. 3. Gokhale A.B., Abbaschian G.J. // J. Phase Equilibria. 1987. V. 8. P. 474. https://doi.org/10.1007/BF02893156
  4. 4. Okamoto H. // J. Phase Equilibria. 2001. V. 22 P. 593. https://doi.org/10.1361/105497101770332866
  5. 5. Boren B. // Archive Chem., Mineral. Geol. 1933. V. 11. P. 1.
  6. 6. Dauben C.H., Templeton D.H., Myers C.E. // J. Phys. Chem. 1956. V. 60. P. 443. https://doi.org/10.1021/j150538a015
  7. 7. Tanaka K., Nawata K., Koiwa M. et al. // Mat. Res. Soc. Symp. Proc. 2001. V. 646. P. 4.3.1.
  8. 8. Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К. и др. // ЖТФ. 2011. Т. 81. № 2. С. 147.
  9. 9. Соломкин Ф.Ю., Зайцев В.К., Новиков С.В. и др. // ЖТФ. 2013. Т. 83. № 2. С. 141.
  10. 10. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 1. С. 152.
  11. 11. Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф. и др. // ЖТФ. 2010. Т. 80. № 5. С. 157.
  12. 12. Fedorov M., Zaitsev V. // Thermoelectrics Handbook: Macro to Nano / Ed. Rowe D.M. N.Y.: CRC press, 2006. P. 31.
  13. 13. Burkov A., Vinzelberg H., Schumann J. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 7903.
  14. 14. Novikov S.V., Burkov A.T., Schumann J. // J. Electron. Mater. 2014. V. 43. № 6. P. 2420.
  15. 15. Novikov S.V., Burkov A.T., Schumann J. // J. Alloys Compd. 2013. V. 557. P. 239.
  16. 16. Hielscher R., Schaeben C. // J. Appl. Cryst. 2008. V. 41. P. 1024.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека