- PII
- 10.31857/S0023476123600374-1
- DOI
- 10.31857/S0023476123600374
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 845-853
- Abstract
- Influenza A virus pandemics still remain a threat to global health. One class of antiviral drugs, namely, inhibitors of the specific viral enzyme neuraminidase, is predominantly used in the fight against these pandemics. These antivirals include zanamivir (Relenza™) and oseltamivir (Tamiflu™). The viral resistance to this class of compounds steadily increases. The M2 proton channel of influenza A virus is an alternative clinically proven target for antiviral therapy. However, many circulating virus strains bear amino acid mutations in the M2 protein, causing resistance to drugs of the adamantane series, M2 blockers, such as rimantadine and amantadine. Consequently, inhibitors targeting mutants of the M2 channel are urgently needed for public biosafety and health. This review is devoted to structural-functional interactions used in practice and mediated by the action of experimental drugs on the protein target, the transmembrane domain of the influenza virus M2 proton channel. An analysis of the experimental and model structural data available in open access is presented.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Thorlund K., Awad T., Boivin G. et al. // BMC Infect. Dis. 2011. V. 134. https://doi.org/10.1186/1471-2334-11-134
- 2. Singh A., Soliman M. // Drug Des. Devel. Ther. 2015. V. 9. P. 4137. https://doi.org/10.2147/DDDT.S81934
- 3. Lampejo T. // Eur. J. Clin. Microbiol. Infect. Dis. 2020. V. 39 (7). P. 1201. https://doi.org/10.1007/s10096-020-03840-9
- 4. Sriwilaijaroen N., Suzuki Y. // Proc. Jpn. Acad. B. Phys. Biol. Sci. 2012. V. 88 (6). P. 226.
- 5. Ленева И.А., Гуськова Т.А. // Русский медицинский журнал. 2008. Т. 29 (16). С. 3.
- 6. Leneva I.A., Russell R.J., Boriskin Y.S. et al. // Antiviral Res. 2009. V. 81 (2). P. 132. https://doi.org/10.1016/j.antiviral.2008.10.009
- 7. WHO Guidelines for Pharmacological Management of Pandemic Influenza A(H1N1) 2009 and other Influenza Viruses. WHO Geneva, 2010. Part I.
- 8. Centers for Disease Control and Prevention Recommendations. CS HCVG-15-FLU-107. 2018.
- 9. Scott C., Griffin S. // J. Gen. Virol. 2015. V. 96 (8). P. 2000. https://doi.org/10.1099/vir.0.000201
- 10. Wang J., Wu Y., Ma C. et al. // PNAS. 2013. V. 110 (4). P. 1315. https://doi.org/10.1073/pnas.1216526110
- 11. Nieto-Torres J.L., Verdia-Baguena C., Castano-Rodriguez C. et al. // Viruses. 2015. V. 7. P. 3552. https://doi.org/10.3390/v7072786
- 12. Liang R., Swanson J.M.J., Madsen J.J. et al. // PNAS. 2016. V. 113 (45). P. 6955. https://doi.org/10.1073/pnas.1615471113
- 13. Duong-Ly K.C., Nanda V., Degrado W.F. et al. // Protein Sci. 2005. V. 14 (4). P. 856. https://doi.org/10.1110/ps.041185805
- 14. Krejcova L., Michalek P., Hynek D. et al. // J. Metallomics Nanotechnol. 2015. V. 1. P. 13.
- 15. Sakaguchi T., Leser G.P., Lamb R.A. // J. Cell. Biol. 1996. V. 133 (4). P. 733. https://doi.org/10.1083/jcb.133.4.733
- 16. Ichinohe T., Pang I.K., Iwasaki A. // Nat. Immunol. 2010. V. 11 (5). P. 404. https://doi.org/10.1038/ni.1861
- 17. Rossman J.S., Lamb R.A. // Virology. 2011. V. 411 (2). P. 229. https://doi.org/10.1016/j.virol.2010.12.003
- 18. Mould J.A., Li H.C., Dudlak C.S. et al. // J. Biol. Chem. 2000. V. 275 (12). P. 8592. https://doi.org/10.1074/jbc.275.12.8592
- 19. Tang Y., Zaitseva F., Lamb R.A. et al. // J. Biol. Chem. 2002. V. 277 (42). P. 39880. https://doi.org/10.1074/jbc.M206582200
- 20. Miao Y., Fu R., Zhou H.X. et al. // Structure. 2015. V. 23 (12). P. 2300. https://doi.org/10.1016/j.str.2015.09.011
- 21. Hu F., Luo W., Hong M. // Science. 2010. V. 330 (6003). P. 505. https://doi.org/10.1126/science.1191714
- 22. Venkataraman P., Lamb R.A., Pinto L.H. // J. Biol. Chem. 2005. V. 280 (22). P. 21463. https://doi.org/10.1074/jbc.M412406200
- 23. Acharya R., Carnevale V., Fiorin G. et al. // PNAS. 2010. V. 107 (34). P. 15075. https://doi.org/10.1073/pnas.1007071107
- 24. Thomaston J.L., Alfonso-Prieto M., Woldeyes R.A. et al. // PNAS. 2015. V. 112 (46). P. 14260. https://doi.org/10.1073/pnas.1518493112
- 25. Holsinger L.J., Nichani D., Pinto L.H. et al. // J. Virol. 1994. V. 68 (3). P. 1551. https://doi.org/10.1128/JVI.68.3.1551-1563.1994
- 26. Rossman J.S., Jing X., Leser G.P. et al. // Cell. 2010. V. 142 (6). P. 902. https://doi.org/10.1016/j.cell.2010.08.029
- 27. Stouffer A.L., Acharya R., Salom D. et al. // Nature. 2008. V. 451. P. 596. https://doi.org/10.1038/nature06528
- 28. Schnell J.R., Chou J.J. // Nature. 2008. V. 451. P. 591. https://doi.org/10.1038/nature06531
- 29. Pielak R.M., Chou J.J. // Biomembranes. 2011. V. 1808 (2). P. 522. https://doi.org/10.1016/j.bbamem.2010.04.15
- 30. Arroyo M., Beare A.S., Reed S.E. et al. // J. Antimicrob. Chemother. 1975. V. 1 (4 Suppl). P. 87. https://doi.org/10.1093/jac/1.suppl_4.87
- 31. Vorobjev Y.N. // J. Biomol. Struct. Dyn. 2020. V. 39 (7). P. 2352. https://doi.org/10.1080/07391102.2020.1747550
- 32. Dobson J., Whitley R.J., Pocock S. et al. // Lancet. 2015. V. 385 (9979). P. 1729. https://doi.org/10.1016/S0140-6736 (14)62449-1
- 33. Golan D.E., Armstrong E.J., Armstrong A.W. // Principles of pharmacology: the pathophysiologic basis of drug therapy. 4th ed. Philadelphia: Wolters Kluwer, 2017. P. 142, 199, 205t, 224t, 608, 698.
- 34. Hay A.J., Wolstenholme A.J., Skehel J.J. et al. // EMBO J. 1985. V. 4. P. 3021. https://doi.org/10.1002/j.1460-2075.1985.tb04038.x
- 35. Wang C., Takeuchi K., Pinto L.H. et al. // J. Virol. 1993. V. 67 (9). P. 5585. https://doi.org/10.1128/jvi.67.9.5585-5594.1993
- 36. Sansom M.S., Kerr I.D. // Protein Eng. 1993. V. 6 (1). P. 65. https://doi.org/10.1093/protein/6.1.65
- 37. Duff K.C., Gilchrist P.J., Saxena A.M. et al. // Virology. 1994. V. 202 (1). P. 287. https://doi.org/10.1006/viro.1994.1345
- 38. Gandhi C.S., Shuck K., Lear J.D. et al. // J. Biol. Chem. 1999. V. 274 (9). P. 5474. https://doi.org/10.1074/jbc.274.9.5474
- 39. Cady S.D., Mishanina T.V., Hong M. // J. Mol. Biol. 2009. V. 385 (4). P. 1127. https://doi.org/10.1016/j.jmb.2008.11.022
- 40. Pielak R.M., Schnell J.R., Chou J.J. // Proc. Natl. Acad. Sci. 2009. V. 106. P. 7379. https://doi.org/10.1073/pnas.0902548106
- 41. Bright R.A., Medina M.J., Xu X. et al. // Lancet. 2005. V. 366 (9492). P. 1175. https://doi.org/10.1016/S0140-6736 (05)67338-2
- 42. Дерябин П.Г., Гараев Т.М., Финогенова М.П. и др. // Вопросы вирусологии. 2019. Т. 64. Вып. 6. С. 268.
- 43. Шибнев В.А., Гараев Т.М., Финогенова М.П. и др. // Химико-фармацевтический журнал. 2012. Т. 46. Вып. 1. С. 36.
- 44. Дерябин П.Г., Гараев Т.М., Финогенова М.П. и др. // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157 (1). С. 73.
- 45. Garaev T.M., Odnovorov A.I., Lashkov A.A. et al. // Adv. Pharm. Bull. 2021. V. 11 (4). P. 700. https://doi.org/10.34172/apb.2021.079
- 46. Thomaston J.L., Polizzi N.F., Konstantinidi A. et al. // J. Am. Chem. Soc. 2018. V. 140 (45). P. 15219. https://doi.org/10.1021/jacs.8b06741
- 47. Thomaston J.L., Konstantinidi A., Liu L. et al. // Biochemistry. 2020. V. 59 (4). P. 627. https://doi.org/10.1021/acs.biochem.9b00971
- 48. Thomaston J.L., Woldeyes R.A., Nakane T. et al. // PNAS. 2017. V. 114 (51). P. 13357. https://doi.org/10.1073/pnas.1705624114
- 49. Thomaston J.L., Wu Y., Polizzi N. et al. // J. Am. Chem. Soc. 2019. V. 141 (29). P. 11481. https://doi.org/10.1021/jacs.9b02196