RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Mineralization of Shells of Emulsion Polyelectrolyte Microcapsules by Calcium Carbonate

PII
10.31857/S0023476123600490-1
DOI
10.31857/S0023476123600490
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
1002-1008
Abstract
The calcium-carbonate-induced mineralization of multilayer shells of emulsion capsules, formed using layer-by-layer assembly of polyelectrolytes, has been investigated. Optimal conditions for forming microcapsules with a core from shea butter and an organic–inorganic shell from synthetic polyelectrolytes and calcium carbonate are found. The shell morphology and stability of capsules in an aqueous suspension upon heating are investigated, and their cytotoxicity for human fibroblast cells is estimated. It is shown that mineralization of emulsion polyelectrolyte capsules by calcium carbonate in the form of vaterite strengthens the capsule walls and increases their biocompatibility.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Gao J., Karp J.M., Langer R., Joshi. N. // Chem. Mater. 2023. V. 35 (2). P. 359.
  2. 2. Li Z., Xu K., Qin L. et al. // Adv. Mater. 2023. V. 35. P. 1.
  3. 3. Sindhwani S., Chan W.C.W. // J. Intern. Med. 2021. V. 290 (3). P. 486.
  4. 4. Блынская Е.В., Юдина Д.В., Алексеев К.В., Марахова А.И. // Фармация. 2017. Т. 66. С. 15.
  5. 5. Rahman A., Haider Md. F., Naseem N., Rahman N. // Int. J. Pharm. Sci. Rev. Res. 2023. V. 79 (2). P. 78.
  6. 6. Gouin S. // Trends Food Sci. Technol. 2004. V. 15 (7–8). P. 330.
  7. 7. Grigoriev D.O., Bukreeva T., Möhwald H., Shchukin D.G. // Langmuir. 2008. V. 24. P. 999.
  8. 8. Shchukina E.M., Shchukin D.G. // Adv. Drug Deliv. Rev. 2011. V. 63 (9). P. 837.
  9. 9. Bukreeva T.V., Borodina T.N., Trushina D.B. // Colloid J. 2022. V. 84 (5). P. 621.
  10. 10. Ariga K., Lvov Y., Decher G. // Phys. Chem. Chem. Phys. Royal Soc. Chem. 2022. V. 24 (7). P. 4097.
  11. 11. Mateos-Maroto A., Fernández-Peña L., Abelenda-Núñez I. et al. // Polymers. 2022. V. 14 (3). P. 479.
  12. 12. Boehnke N., Correa S., Hao L. et al. // Angew. Chem. Int. Ed Engl. 2020. V. 59 (7). P. 2776.
  13. 13. Gao H., Wen D., Sukhorukov G.B. // J. Mater. Chem. B. Royal Soc. Chem. 2015. V. 3 (9). P. 1888.
  14. 14. Gao H., Wen D., Tarakina N.V. et al. // Nanoscale. 2016. V. 8 (9). P. 5170.
  15. 15. Shchukin D.G., Sukhorukov G.B., Möhwald H. // Angew. Chem. Int. Ed. 2003. V. 42 (37). P. 4472.
  16. 16. Patel I.F., Kiryukhin M.V., Yakovlev N.L. et al. // J. Mater. Chem. B. 2015. V. 3 (24). P. 4821.
  17. 17. Trofimov A.D., Ivanova A.A., Zyuzin M.V. et al. // Pharmaceutics. 2018. V. 10 (4). P. 167.
  18. 18. Trushina D.B., Borodina T.N., Belyakov S. et al. // Mater. Today Adv. 2022. V. 14. P. 100214.
  19. 19. Honfo F.G., Akissoe N., Linnemann A.R. et al. // Crit. Rev. Food Sci. Nutr. 2014. V. 54 (5). P. 673.
  20. 20. Borodina T., Grigoriev D., Markvicheva E. et al. // Adv. Eng. Mater. 2011. V. 13 (3). P. B123.
  21. 21. Garfias A.F.P., Jardim K.V., Ruiz-Ortega L.I. et al. // Colloid Polym. Sci. 2022. V. 300 (12) P. 1327.
  22. 22. Yang Y., Guo L., Wang Z. et al. // Biomater. 2021. V. 264. P. 120390.
  23. 23. Mollaeva M.R., Nikolskaya E., Beganovskaya V. et al. // Antioxidants. MDPI. 2021. V. 10 (12). P. 1985.
  24. 24. Fischer D., Li Y., Ahlemeyer B. et al. // Biomater. 2003. V. 24 (7). P. 1121.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library