RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Study of the Precrystallization Solution of Lysozyme by Accelerated Molecular Dynamics Simulation

PII
10.31857/S0023476123600635-1
DOI
10.31857/S0023476123600635
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 6
Pages
951-954
Abstract
The behavior of a dimer isolated from the crystal structure of tetragonal lysozyme has been simulated using the accelerated molecular dynamics method. The simulation time was 240 ns. The simulation data are compared with the data obtained previously using classical molecular dynamics. It is shown that the dimer studied is stable in both experiments, but the accelerated molecular dynamics method made it possible to reveal additional conformational changes in lysozyme molecules.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Timofeev V., Samygina V. // Crystals. 2023. V. 13 (1). P. 71. https://doi.org/10.3390/cryst13010071
  2. 2. https://www.rcsb.org/stats/summary
  3. 3. Pusey M., Witherow W., Naumann R. // ScienceDirect. 1988. V. 90. P. 105. https://doi.org/10.1016/0022-0248 (88)90304-1
  4. 4. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. № 4. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
  5. 5. Aaron Taudt, Axel Arnold, Jurgen Pleiss // Phys. Rev. E. 2015. V. 91. 033311. https://doi.org/10.1103/PhysRevE.91.033311
  6. 6. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11 (1). P. 1121. https://doi.org/10.3390/cryst11091121
  7. 7. Antonija Kuzmanic, Bojan Zagrovic // Biophys. J. 2014. V. 106. P. 677. https://doi.org/10.1016/j.bpj.2013.12.022
  8. 8. Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // Biochemistry. 2008. V. 47–46. P. 12065. https://doi.org/10.1021/bi800894u
  9. 9. Meinhold L., Merzel F., Smith J.C. // Phys. Rev. Lett. 2007. V. 99. 138101. https://doi.org/10.1103/PhysRevLett.99.138101
  10. 10. Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // J. Phys. Chem. B. 2009. V. 113. № 19. P. 6971. https://doi.org/10.1021/jp9010372
  11. 11. Kordonskaya Y.V., Marchenkova M.A., Timofeev V.I. et al. // J. Biomol. Struct. Dyn. 2020 V. 39 (18). P. 7223. https://doi.org/10.1080/07391102.2020.1803138
  12. 12. Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A., Konarev P.V. // Crystals. 2022. V. 12. P. 484. https://doi.org/10.3390/cryst12040484
  13. 13. Nguyen H., Maier J., Huang H. et al. // J. Am. Chem. Soc. 2014. V. 136 (40). P. 13959. https://doi.org/10.1021/ja5032776
  14. 14. Onufriev A.V., Case D.A. // Annu. Rev. Biophys. 2019. V. 58. P. 275. https://doi.org/10.1146/annurev-biophys-052118-115325
  15. 15. Marrink S.J., Risselada H.J., Yefimov S. et al. // J. Phys. Chem. B. 2007. V. 111. № 27. P. 7812. https://doi.org/10.1021/jp071097f
  16. 16. Sun F., Schroer C.F.E., Palacios C.R. et al. // PLoS Comput. Biol. 2022. V. 16 (4). E. 1007777. https://doi.org/10.1371/journal.pcbi.1007777
  17. 17. Pezeshkian W., Marrink S.J. // Curr. Opin. Cell Biol. 2021. V. 71. P. 103. https://doi.org/10.1016/j.ceb.2021.02.009
  18. 18. Thallmair S., Javanainen M., Fábián B. et al. // J. Phys. Chem. 2021. V. 125. (33). P. 9537. https://doi.org/10.1021/acs.jpcb.1c03665
  19. 19. Frallicciardi J., Melcr J., Siginou P. et al. // Nat. Commun. 2022. V. 13. P. 1605. https://www.nature.com/articles/s41467-022-29272-x
  20. 20. Korotkova P.D., Shumm A.B., Vladimirov Y.A. et al. // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2021. V. 15. № 4. P. 652.
  21. 21. Hamelberg D., Mongan J., McCammon J.A. // J. Chem. Phys. 2004. V. 120 (24). P. 11919. https://doi.org/10.1063/1.175565
  22. 22. Shaw D.E. et al. // Science. 2010. V. 330. P. 341. https://doi.org/10.1126/science.1187409
  23. 23. Marchenkova M.A. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. № 17. P. 5159. https://doi.org/10.1080/07391102.2019.1696706
  24. 24. Dolinsky T.J. et al. // Nucl. Acids Res. 2004. V. 32. P. W665. https://doi.org/10.1093/nar/gkh381
  25. 25. Case D.A. et al. // J. Comput. Chem. 2005. V. 26. P. 1668. https://doi.org/10.1002/jcc.20290
  26. 26. Tian C. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 528. https://doi.org/10.1021/acs.jctc.9b00591
  27. 27. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79 (2). P. 926. https://doi.org/10.1063/1.445869
  28. 28. Allen M.P., Tildesley D.J. // Computer simulation of liquids. New York: Oxford university press, 1991.
  29. 29. Hoover W.G., Ladd A.J.C., Phys B.M. // Phys. Rev. Lett. 1982. V. 48. 1818. https://doi.org/10.1103/PhysRevLett.48.1818
  30. 30. Evans D.J., Chem J. // Chem. Phys. 1983. V. 77 (1). P. 63. https://doi.org/10.1016/0301-0104 (83)85065-4
  31. 31. Berendsen H.J.C. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
  32. 32. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11. P. 1534. https://doi.org/10.3390/cryst11121534
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library