- PII
- 10.31857/S0023476123600635-1
- DOI
- 10.31857/S0023476123600635
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 6
- Pages
- 951-954
- Abstract
- The behavior of a dimer isolated from the crystal structure of tetragonal lysozyme has been simulated using the accelerated molecular dynamics method. The simulation time was 240 ns. The simulation data are compared with the data obtained previously using classical molecular dynamics. It is shown that the dimer studied is stable in both experiments, but the accelerated molecular dynamics method made it possible to reveal additional conformational changes in lysozyme molecules.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Timofeev V., Samygina V. // Crystals. 2023. V. 13 (1). P. 71. https://doi.org/10.3390/cryst13010071
- 2. https://www.rcsb.org/stats/summary
- 3. Pusey M., Witherow W., Naumann R. // ScienceDirect. 1988. V. 90. P. 105. https://doi.org/10.1016/0022-0248 (88)90304-1
- 4. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. № 4. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
- 5. Aaron Taudt, Axel Arnold, Jurgen Pleiss // Phys. Rev. E. 2015. V. 91. 033311. https://doi.org/10.1103/PhysRevE.91.033311
- 6. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11 (1). P. 1121. https://doi.org/10.3390/cryst11091121
- 7. Antonija Kuzmanic, Bojan Zagrovic // Biophys. J. 2014. V. 106. P. 677. https://doi.org/10.1016/j.bpj.2013.12.022
- 8. Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // Biochemistry. 2008. V. 47–46. P. 12065. https://doi.org/10.1021/bi800894u
- 9. Meinhold L., Merzel F., Smith J.C. // Phys. Rev. Lett. 2007. V. 99. 138101. https://doi.org/10.1103/PhysRevLett.99.138101
- 10. Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // J. Phys. Chem. B. 2009. V. 113. № 19. P. 6971. https://doi.org/10.1021/jp9010372
- 11. Kordonskaya Y.V., Marchenkova M.A., Timofeev V.I. et al. // J. Biomol. Struct. Dyn. 2020 V. 39 (18). P. 7223. https://doi.org/10.1080/07391102.2020.1803138
- 12. Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A., Konarev P.V. // Crystals. 2022. V. 12. P. 484. https://doi.org/10.3390/cryst12040484
- 13. Nguyen H., Maier J., Huang H. et al. // J. Am. Chem. Soc. 2014. V. 136 (40). P. 13959. https://doi.org/10.1021/ja5032776
- 14. Onufriev A.V., Case D.A. // Annu. Rev. Biophys. 2019. V. 58. P. 275. https://doi.org/10.1146/annurev-biophys-052118-115325
- 15. Marrink S.J., Risselada H.J., Yefimov S. et al. // J. Phys. Chem. B. 2007. V. 111. № 27. P. 7812. https://doi.org/10.1021/jp071097f
- 16. Sun F., Schroer C.F.E., Palacios C.R. et al. // PLoS Comput. Biol. 2022. V. 16 (4). E. 1007777. https://doi.org/10.1371/journal.pcbi.1007777
- 17. Pezeshkian W., Marrink S.J. // Curr. Opin. Cell Biol. 2021. V. 71. P. 103. https://doi.org/10.1016/j.ceb.2021.02.009
- 18. Thallmair S., Javanainen M., Fábián B. et al. // J. Phys. Chem. 2021. V. 125. (33). P. 9537. https://doi.org/10.1021/acs.jpcb.1c03665
- 19. Frallicciardi J., Melcr J., Siginou P. et al. // Nat. Commun. 2022. V. 13. P. 1605. https://www.nature.com/articles/s41467-022-29272-x
- 20. Korotkova P.D., Shumm A.B., Vladimirov Y.A. et al. // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2021. V. 15. № 4. P. 652.
- 21. Hamelberg D., Mongan J., McCammon J.A. // J. Chem. Phys. 2004. V. 120 (24). P. 11919. https://doi.org/10.1063/1.175565
- 22. Shaw D.E. et al. // Science. 2010. V. 330. P. 341. https://doi.org/10.1126/science.1187409
- 23. Marchenkova M.A. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. № 17. P. 5159. https://doi.org/10.1080/07391102.2019.1696706
- 24. Dolinsky T.J. et al. // Nucl. Acids Res. 2004. V. 32. P. W665. https://doi.org/10.1093/nar/gkh381
- 25. Case D.A. et al. // J. Comput. Chem. 2005. V. 26. P. 1668. https://doi.org/10.1002/jcc.20290
- 26. Tian C. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 528. https://doi.org/10.1021/acs.jctc.9b00591
- 27. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79 (2). P. 926. https://doi.org/10.1063/1.445869
- 28. Allen M.P., Tildesley D.J. // Computer simulation of liquids. New York: Oxford university press, 1991.
- 29. Hoover W.G., Ladd A.J.C., Phys B.M. // Phys. Rev. Lett. 1982. V. 48. 1818. https://doi.org/10.1103/PhysRevLett.48.1818
- 30. Evans D.J., Chem J. // Chem. Phys. 1983. V. 77 (1). P. 63. https://doi.org/10.1016/0301-0104 (83)85065-4
- 31. Berendsen H.J.C. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
- 32. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11. P. 1534. https://doi.org/10.3390/cryst11121534