RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Electro-induced photonic structures in cholesteric and nematic liquid crystals

PII
10.31857/S0023476124020036-1
DOI
10.31857/S0023476124020036
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 2
Pages
192-205
Abstract
This paper reviews recent research performed at the liquid crystals laboratory of the A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, focusing on photonic liquid crystalline structures induced by electric fields. Due to field-induced spatial modulation of the refractive index, such structures exhibit optical properties characteristic of photonic crystals. Two types of structures are discussed. The first type is induced in cholesteric liquid crystals with spontaneous formation of a helical director distribution. The orientation transition to a state with a lying helix – with the axis in the plane of the layer – is considered. The second type consists of homogeneous layers of non-chiral nematic liquid crystals, where the modulation of the refractive index arises due to the flexoelectric instability effect. In both cases, periodic boundary conditions of molecule orientation are crucial. Methods of forming boundary conditions and the photonic properties of structures are reviewed.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Schadt M. // Annu. Rev. Mater. Sci. 1997. V. 27. P. 305. https://doi.org/10.1146/annurev.matsci.27.1.305
  2. 2. Hsiang E.-L., Yang Z., Yang Q. et al. // Adv. Opt. Photonics. 2022. V. 14. P. 783. https://doi.org/10.1364/aop.468066
  3. 3. Yin K., Hsiang E.-L., Zou J. et al. // Light Sci. Appl. 2022. V. 11. P. 161. https://doi.org/10.1038/s41377-022-00851-3
  4. 4. Li X., Li Y., Xiang Y. et al. //. Opt. Express. 2016. V. 24. P. 8824. https://doi.org/10.1364/OE.24.008824
  5. 5. Davis S.R., Farca G., Rommel S.D. et al. // Proc. SPIE. 2010. V. 7618. P. 76180E-1. https://doi.org/10.1117/12.851788
  6. 6. Brown C.M., Dickinson D.K.E., Hands P.J.W. // Opt. Laser Technol. 2021. V. 140. P. 107080. https://doi.org/10.1016/j.optlastec.2021.107080
  7. 7. Coles H., Morris S. // Nat. Photonics. 2010. V. 4. P. 676. https://doi.org/10.1038/nphoton.2010.184
  8. 8. Ortega J., Folcia C.L., Etxebarria J. // Liq. Cryst. 2022. V. 49. P. 427. https://doi.org/10.1080/02678292.2021.1974584
  9. 9. Inoue Y., Yoshida H., Inoue K. et al. // Appl. Phys. Express. 2010. V. 3. P. 102702. https://doi.org/10.1143/apex.3.102702
  10. 10. Palto S.P., Geivandov A.R., Kasyanova I.V. et al. // Opt. Lett. 2021. V. 46. P. 3376. https://doi.org/10.1364/OL.426904
  11. 11. Kasyanova I.V., Gorkunov M.V., Palto S.P. // Europhys. Lett. 2022. V. 136. P. 24001. https://doi.org/10.1209/0295-5075/ac4ac9
  12. 12. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // ACS Photonics. 2020. V. 7. P. 3096. https://doi.org/10.1021/acsphotonics.0c01168
  13. 13. Shtykov N.M., Palto S.P., Geivandov A.R. et al. // Opt. Lett. 2020. V. 45. P. 4328. https://doi.org/10.1364/ol.394430
  14. 14. Palto S.P. // Crystals. 2019. V. 9. P. 469. https://doi.org/10.3390/cryst9090469
  15. 15. Kopp V.I., Zang Z.-Q., Genack A.Z. // Prog. Quantum Electron. 2003. V. 27. P. 369. https://doi.org/10.1016/S0079-6727 (03)00003-X
  16. 16. Kogelnik H., Shank C.V. // J. Appl. Phys. 1972. V. 43. P. 2327. https://doi.org/10.1063/1.1661499
  17. 17. Palto S.P., Shtykov N.M., Kasyanova I.V. et al. // Liq. Cryst. 2020. V. 47. P. 384. https://doi.org/10.1080/02678292.2019.1655169
  18. 18. Вистинь Л.К. // Докл. АН СССР. 1970. Т. 194. № 6. С. 1318.
  19. 19. Williams R. // J. Chem. Phys. 1963. V. 39. P. 384. https://doi.org/10.1063/1.1734257
  20. 20. Бобылев Ю.П., Пикин С.А. // ЖЭТФ. 1977. Т. 72. С. 369.
  21. 21. Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 336 с.
  22. 22. Барник М.И., Блинов Л.М., Труфанов А.Н. и др. // ЖЭТФ. 1977. Т. 73. С. 1936.
  23. 23. Barnik M.I., Blinov L.M., Trufanov A.N. et al. // J. Phys. France. 1978. V. 39. № 4. P. 417. https://doi.org/10.1051/jphys:01978003904041700
  24. 24. Meyer R.B. // Phys. Rev. Lett. 1969. V. 22. P. 918. https://doi.org/10.1103/PhysRevLett.22.918
  25. 25. Palto S.P. // Crystals. 2021. V. 11. P. 894. https://doi.org/10.3390/cryst11080894
  26. 26. Simdyankin I.V., Geivandov A.R., Umanskii B.A. et al. // Liq. Cryst. 2023. V. 50. № 4. P. 663. https://doi.org/10.1080/02678292.2022.2154865
  27. 27. Палто С.П., Гейвандов А.Р., Касьянова И.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. Вып. 3. С. 158. https://doi.org/10.7868/S0370274X17030067
  28. 28. Kasyanova I.V., Gorkunov M.V., Artemov V.V. et al. // Opt. Express. 2018. V. 26. P. 20258. https://doi.org/10.1364/oe26.020258
  29. 29. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1691. https://doi.org/10.3762/bjnano.10.164
  30. 30. Артемов В.В., Хмеленин Д.Н., Мамонова А.В. и др. // Кристаллография. 2021. Т. 66. № 4. С. 636. https://doi.org/10.31857/S0023476121040032
  31. 31. Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1963. T. 14. Вып. 5. С. 624.
  32. 32. Макушенко А.М., Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1971. T.31. Вып. 4. С. 557.
  33. 33. Козенков В.М., Юдин С.Г., Катышев Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 12. № 20. С. 1267.
  34. 34. Ostrovskii B.I., Palto S.P. // Liq. Cryst. Today. 2023. V. 32. P. 18. https://doi.org/10.1080/1358314X.2023.2265788
  35. 35. Palto S.P., Shtykov N.M., Khavrichev V.A. et al. // Mol. Mater. 1992. V. 1. P. 3.
  36. 36. Palto S.P., Khavrichev V.A., Yudin S.G. et al. // Mol. Mater. 1992. V. 2. P. 63.
  37. 37. Palto S.P., Blinov L.M., Yudin S.G. et al. // Chem. Phys. Lett. 1993. V. 202. P. 308. https://doi.org/10.1016/0009-2614 (93)85283-t
  38. 38. Palto S.P., Durand G. // J. Phys. II France. 1995. V. 5. P. 963. https://doi.org/10.1051/jp2:1995223
  39. 39. Palto S.P., Yudin S.G., Germain C. et al. // J. Phys. II France. 1995. V. 5. P. 133. https://doi.org/10.1051/jp2:1995118
  40. 40. Kwok H.S., Chigrinov V.G., Takada H. et al. // J. Display Technol. 2005. V. 1. P. 41. https://doi.org/10.1109/jdt.2005.852512
  41. 41. Shteyner E.A., Srivastava A.K., Chigrinov V.G. et al. // Soft Matter. 2013. V. 9. P. 5160. https://doi.org/10.1039/c3sm50498k
  42. 42. Chen D., Zhao H., Yan K. et al. // Opt. Express. 2019. V. 27. P. 29332. https://doi.org/10.1364/oe.27.029332
  43. 43. Geivandov A.R., Simdyankin I.V., Barma D.D. et al. // Liq. Cryst. 2022. V. 49. P. 2027. https://doi.org/10.1080/02678292.2022.2094004
  44. 44. Salter P.S., Carbone G., Jewell S.A. et al. // Phys. Rev. E. 2009. V. 80. P. 041707. https://doi.org/10.1103/PhysRevE.80.041707
  45. 45. Yu C.-H., Wu P.-C., Lee W. // Crystals. 2019. V. 9. P. 183. https://doi.org/10.3390/cryst9040183
  46. 46. Kahn F.J. // Phys. Rev. Lett. 1970. V. 24. P. 209. https://doi.org/10.1103/PhysRevLett.24.209
  47. 47. Palto S.P., Barnik M.I., Geivandov A.R. et al. // Phys. Rev. E. 2015. V. 92. P. 032502. https://doi.org/10.1103/PhysRevE.92.032502
  48. 48. Link D.R., Nakata M., Takanishi Y. et al. // Phys. Rev. E. 2001. V. 65. P. 010701(R). https://doi.org/10.1103/PhysRevE.65.010701
  49. 49. Palto S.P., Mottram N.J., Osipov M.A. // Phys. Rev. E. 2007. V 75. P. 061707. https://doi.org/10.1103/PhysRevE.75.061707
  50. 50. Xiang Y., Jing H.-Z., Zhang Z.-D. et al. // Phys. Rev. Appl. 2017. V. 7. P. 064032. https://doi.org/10.1103/PhysRevApplied.7.064032
  51. 51. Škarabot M., Mottram N.J., Kaur S. et al. // ACS Omega. 2022. V. 7. P. 9785. https://doi.org/10.1021/acsomega.2c00023
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library