ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Субнаносекундная рентгенодифракционная методика изучения лазерно-индуцированных поляризационно-зависимых процессов на КИСИ-Курчатов

Код статьи
10.31857/S0023476124020053-1
DOI
10.31857/S0023476124020053
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 2
Страницы
221-229
Аннотация
С помощью синхронизации наносекундных лазерных импульсов с электронными сгустками синхротронного источника КИСИ-Курчатов зарегистрирована динамика параметров дифракционного пика 0012 кристаллов LiNbO3:Fe с временным разрешением менее 1 нс. Воздействие лазерного импульса (λ = 532 нм, t = 4 нс, плотность энергии 0.6 Дж/см2) при различных направлениях поляризации лазерного излучения вызывает изменение интенсивности пика, которое зависит от угла между направлением поляризации лазерного излучения и кристаллографическими осями. Полученные результаты дополнены вейвлет-анализом экспериментальных данных. Наблюдаемая поляризационная зависимость коррелирует с опубликованными данными о фотовольтаическом эффекте.
Ключевые слова
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
  2. 2. Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
  3. 3. Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
  4. 4. Bressler C., Abela R., Chergui M. // Z. Kristallogr. 2008. V. 223. P. 307. https://doi.org/10.1524/zkri.2008.0030
  5. 5. Schropp A., Hoppe R., Meier V. et al. // Sci. Rep. 2015. V. 5. P. 1. https://doi.org/10.1038/srep11089
  6. 6. Gleason A.E., Bolme C.A., Lee H.J. et al. // Nat. Commun. 2015. V. 6. P. 8191. https://doi.org/10.1038/ncomms9191
  7. 7. Winter J., Rapp S., Mcdonnell C. et al. // Proceedings of the Lasers in Manufacturing Conference. 2019. P. 1.
  8. 8. Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
  9. 9. Марченков Н.В., Куликов А.Г., Аткнин И.И. и др. // Успехи физ. наук. 2019. Т. 189. С. 187. https://doi.org/10.3367/UFNr.2018.06.038348
  10. 10. Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // ФТТ. 2020. Т. 62. С. 2120. https://doi.org/10.21883/FTT.2020.12.50216.087
  11. 11. Ибрагимов Э.С., Куликов А.Г., Марченков Н.В. и др. // ФТТ. 2022. Т. 64. С. 1760. https://doi.org/10.21883/FTT.2022.11.53330.421
  12. 12. Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
  13. 13. Popmintchev T., Chen M.C., Popmintchev D. et al. // Science. 2012. V. 336. P. 1287. https://doi.org/10.1126/science.1218497
  14. 14. Kling M.F., Vrakking M.J.J. // Annu. Rev. Phys. Chem. 2008. V. 59. P. 463. https://doi.org/10.1146/annurev.physchem.59.032607.093532
  15. 15. Nishidome H., Nagai K., Uchida K. et al. // Nano Lett. 2020. V. 20. P. 6215. https://doi.org/10.1021/acs.nanolett.0c02717
  16. 16. Rumiantsev B.V., Pushkin A.V., Potemkin F.V. // JETP Lett. 2023. V. 118. P. 273. https://doi.org/10.1134/S0021364023602300
  17. 17. Niikura H., Dudovich N., Villeneuve D.M. et al. // Phys. Rev. Lett. 2010. V. 105. P. 1. https://doi.org/10.1103/PhysRevLett.105.053003
  18. 18. Cavalieri A.L., Müller N., Uphues T. et al. // Nature. 2007. V. 449. P. 1029. https://doi.org/10.1038/nature06229
  19. 19. Rumiantsev B.V., Pushkin A.V., Mikheev K.E. et al. // JETP Lett. 2022. V. 116. P. 683. https://doi.org/10.1134/S0021364022602123
  20. 20. Pupeza I., Huber M., Trubetskov M. et al. // Nature. 2020. V. 577. P. 52. https://doi.org/10.1038/s41586-019-1850-7
  21. 21. Garmatina A.A., Shubnyi A.G., Asadchikov V.E. et al. // J. Phys. Conf. Ser. 2021. V. 2036. P. 012037. https://doi.org/10.1088/1742-6596/2036/1/012037
  22. 22. Murnane M.M., Kapteyn H.C., Rosen M.D. et al. // Science. 1991. V. 251. P. 531. https://doi.org/10.1126/science.251.4993.531
  23. 23. Martín L., Benlliure J., Cortina-Gil D. et al. // Phys. Med. 2021. V. 82. P. 163. https://doi.org/10.1016/j.ejmp.2020.12.023
  24. 24. Shew B.Y., Hung J.T., Huang T.Y. et al. // J. Micromech. Microeng. 2003. V. 13. P. 708. https://doi.org/10.1088/0960-1317/13/5/324
  25. 25. Holtz M., Hauf C., Salvador A.A.H. et al. // Phys. Rev. B. 2016. V. 94. P. 1. https://doi.org/10.1103/PhysRevB.94.104302
  26. 26. Huang N., Deng H., Liu B. et al. // Innovation. 2021. V. 2. P. 100097. https://doi.org/10.1016/j.xinn.2021.100097
  27. 27. Nishiyama T., Kumagai Y., Niozu A. et al. // Phys. Rev. Lett. 2019. V. 123. P. 123201. https://doi.org/10.1103/PhysRevLett.123.123201
  28. 28. Inoue I., Inubushi Y., Sato T. et al. // PNAS. 2016. V. 113. P. 1492. https://doi.org/10.1073/pnas.1516426113
  29. 29. Glownia J.M., Cryan J., Andreasson J. et al. // Opt. Express. 2010. V. 18. P. 17620. https://doi.org/10.1364/OE.18.017620
  30. 30. Geloni G., Saldin E., Schneidmiller E. et al. // Opt. Commun. 2008. V. 281. P. 3762. https://doi.org/10.1016/j.optcom.2008.03.023
  31. 31. Larsson J. // Meas. Sci. Technol. 2001. V. 12. P. 1835. https://doi.org/10.1088/0957-0233/12/11/311
  32. 32. Reusch T., Schülein F., Bömer C. et al. // AIP Adv. 2013. V. 3. P. 072127. https://doi.org/10.1063/1.4816801
  33. 33. Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
  34. 34. Schulz E.C., Yorke B.A., Pearson A.R., Mehrabi P. // Acta. Cryst. D. 2022. V. 78. P. 14. https://doi.org/10.1107/S2059798321011621
  35. 35. Павлов А.Н. // Изв. вузов. ПНД. 2009. Т. 17. С. 99.
  36. 36. Pilyak F.S., Kulikov A.G., Fridkin V.M. et al. // Physica B. 2021. V. 604. P. 412706. https://doi.org/10.1016/j.physb.2020.412706
  37. 37. Sturman B.I., Fridkin V.M. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. Philadelphia: Gordon and Breach Science Publishers, 1992. 238 p.
  38. 38. Пиляк Ф.С., Куликов А.Г., Писаревский Ю.В. и др. // Кристаллография. 2022. Т. 67. С. 850. https://doi.org/10.31857/S0023476122050125
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека