- PII
- 10.31857/S0023476124030129-1
- DOI
- 10.31857/S0023476124030129
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 3
- Pages
- 470-475
- Abstract
- Superproton crystals obtained in the water-salt system CsHSO4–CsH2PO4–H2O were studied using electric atomic force microscopy. At 296 K for the Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) samples, local current-voltage characteristics were measured depending on the crystallographic orientation, the anisotropy of conductivity was established, and the degree of dependence of the conductive properties on the composition of the compounds was shown. Twin structures on cleavage fractures and their correlation with the atomic structure of monoclinic crystals are considered. The common features and differences in the atomic and real structure of mixed crystalline phases and the influence of hydrogen subsystems on their properties are discussed.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 74
References
- 1. Pawlaczyk Cz., Pawłowski A., Połomska M. et al. // Phase Transitions. 2010. V. 83. P. 854. http://dx.doi.org/10.1080/01411594.2010.509159
- 2. Dupuis A.-C. // Prog. Mater. Sci. 2011. V. 56. P. 289. http://dx.doi.org/10.1016/j.pmatsci.2010.11.001
- 3. Paschos O., Kunze J., Stimming U., Maglia F. // J. Phys.: Condens. Matter. 2011. V. 23. P. 234110. http://dx.doi.org/10.1088/0953-8984/23/23/234110
- 4. Colomban P. // Solid State Ionics. 2019. V. 334. P. 125. https://www.researchgate.net/publication/331249475
- 5. Ponomareva V., Lavrova G. // J. Solid State Electrochem. 2011. V. 15. P. 213. http://doi.org/10.1007/s10008-010-1227-1
- 6. Коморников В.А., Гребенев В.В., Макарова И.П. и др. // Кристаллография. 2016. Т. 61. № 4. С. 645.https://doi.org/10.1134/S1063774516040106
- 7. Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2016. V. 72. P. 133. http://dx.doi.org/10.1107/S2052520615023069
- 8. Makarova I., Selezneva E., Grebenev V. et al. // Ferroelectrics. 2016. V. 500. P. 54. https://doi.org/10.1080/00150193.2016.1215204
- 9. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. // ЖТФ. 2020. № 11. С. 1843. http://doi.org/10.21883/JTF.2020.11.49972.116-20
- 10. Kalinin S., Dyck O., Balke N. et al. // ACS Nano. 2019. V. 13. № 9. P. 9735. https://doi.org/10.1021/acsnano.9b02687
- 11. Kempaiah R., Vasudevamurthy G., Subramanian A. // Nano Energy. 2019. P. 103925. http://doi.org/10.1016/j.nanoen.2019.103925
- 12. Louie M.W., Hightower A., Haile S.M. // ACS Nano. 2010. V. 4. № 5. P. 2811.
- 13. Papandrew B., Li Q., Okatan M.B. et al. // Nanoscale. 2015. V. 7. P. 20089. http://doi.org/10.1039/c5nr04809e
- 14. Mikheykin A.S., Chernyshov D.Yu., Makarova I.P. et al. // Solid State Ionics. 2017. V. 305. P. 30. https://doi.org/10.1016/j.ssi.2017.04.017
- 15. Ройтбурд А.Л. // Успехи физ. наук. 1974. Т. 113. Вып. 1. С. 69. https://doi.org/10.3367/UFNr.0113.197405с.0069
- 16. Бойко В.С., Гарбер Р.И., Косевич А.М. Обратимая пластичность кристаллов. М.: Наука, Глав. ред. физ.-мат. лит., 1991. 280 с.
- 17. Остриков О.М. Механика двойникования твердых тел. Гомель: ГГТУ им. П.О. Сухого, 2008. 301 с.
- 18. Gouveia R.F., Bernardes J.S., Ducati T.R.D., Galembeck F. // Anal. Chem. 2012. V. 84. № 23. P. 10191. https://doi.org/10.1021/ac3009753
- 19. Bai X., Riet A., Xu S. et al. // J. Phys. Chem. C 2021. V. 125. P. 11677. https://doi.org/10.1021/acs.jpcc.1c02272
- 20. Masuda H., Ishida N., Ogata Y. et al. // Nanoscale. 2017. V. 9. P. 893. http://doi.org/10.1039/c6nr07971g
- 21. Zhu X., Revilla R.I., Hubin A. // J. Phys. Chem. C. 2018. V.122. № 50. P. 28556. https://doi.org/10.1021/acs.jpcc.8b10364