RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Computer diffraction tomography: a comparative analysis of the use of controlled and wavelet filters for image processing

PII
10.31857/S0023476124050012-1
DOI
10.31857/S0023476124050012
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
755-763
Abstract
The paper provides digital processing of 2D X-ray projection images of a Coulomb-type point defect in a Si(111) crystal recorded by a detector against the background of statistical Gaussian noise. A managed filter and a wavelet filter with a 4th-order Daubechies function are used. The efficiency of filtering 2D images is determined by calculating the relative quadratic deviations of the intensities of filtered and reference (noiseless) 2D images averaged over all points. A comparison of the calculated values of the relative deviations of the intensities shows that the considered methods work quite well and both, in principle, can be effectively used in practice for noise processing of X-ray diffraction images used for 3D reconstruction of nanoscale defects of crystal structures.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://doi.org/10.1107/S160057671801419X
  2. 2. Danilewsky A.N., Wittge J., Croell A. et al. // J. Cryst. Growth. 2011. V. 318. P. 1157. https://doi.org/10.1016/j.jcrysgro.2010.10.199
  3. 3. Danilewsky A., Helfen L., Hamann E., Baumbach T. // Phys. Rev. Lett. 2017. V. 119. P. 215504. https://doi.org/10.1103/PhysRevLett.119.215504
  4. 4. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 16. https://doi.org/10.1107/S2053273320000145
  5. 5. Бондаренко В.И., Конарев П.В., Чуховский Ф.Н. // Кристаллография. 2020. Т. 65. № 6. С. 845. https://doi.org/10.31857/S0023476120060090
  6. 6. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2023. V. 13. P. 561. https://doi.org/10.3390/cryst13040561
  7. 7. Yang W., Hong J.-Y., Kim J.-Y. et al. // Sensors. 2020. V. 20. P. 3063. https://doi.org/10.3390/s20113063
  8. 8. Hendriksen A.A., Bührer M., Leone L. et al. // Sci. Rep. 2021. V. 11. P. 11895. https://doi.org/10.1038/s41598-021-91084-8
  9. 9. Liu N., Schumacher T. // Sensors. 2020. V. 20. P. 1423. https://doi.org/10.3390/s20051423
  10. 10. Hamming R.W. Numerical Methods for Scientists and Engineers. Dover Publications, 2012. 752 p.
  11. 11. He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
  12. 12. Karumuri R., Kumari S.A. // IEEE2nd International Conference on Communication and Electronics Systems (ICCES), 2017. p. 545. https://doi.org/10.1109/CESYS.2017.8321137
  13. 13. Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
  14. 14. Caraffa L., Tarel J.P., Charbonnier P. // IEEE Trans. Image Process. 2015. V. 24. № 4. P. 1199. https://doi.org/10.1109/TIP.2015.2389617
  15. 15. Ham B., Cho M., Ponce J. // IEEE Trans. Pattern Anal. Mach. Intell. 2018. V. 40. № 1. P. 192. https://doi.org/10.1109/TPAMI.2017.2669034
  16. 16. Sun Z., Han B., Li J. et al. // IEEE Trans. Image Process. 2020. V. 29. P. 500. https://doi.org/10.1109/TIP.2019.2928631
  17. 17. Pham C.C., Ha S.V.U., Jeon J.W. // Pacific-Rim Symp. on Image and Video Technology, Gwangju, Republic of Korea. 2011. P. 323. https://doi.org/10.1007/978-3-642-25367-6_29
  18. 18. Pham C.C., Jeon J.W. // 19th IEEE Int. Conf. on Image Processing. Orlando, FL, USA. 2012. P. 993. https://doi.org/10.1109/icip.2012.6467522
  19. 19. Tsai C.L., Tu W.C., Chien S.Y. // IEEE Int. Conf. on Image Processing (ICIP), Québec City, Québec, Canada. 2015. P. 43. https://doi.org/10.1109/ICIP.2015.7350756
  20. 20. Zhang Y.Q., Ding Y., Liu J. // IET Image Process. 2013. V. 7. № 3. P. 270. https://doi.org/10.1049/iet-ipr.2012.0351
  21. 21. Shujin Zhu, Zekuan Yu // IET Image Process. 2020. V. 14. № 11. P. 2561. https://doi.org/10.1049/iet-ipr.2019.1471
  22. 22. Рехвиашвили С.Ш. // Письма в ЖТФ. 2002. Т. 28. № 6. С. 46.
  23. 23. Потапов А.А., Рехвиашвили С.Ш. // ЖТФ. 2018. Т. 88. № 6. С. 803. https://doi.org/10.21883/JTF.2018.06.46008.2159
  24. 24. Mallat S. A Wavelet Tour of Signal Processing. The Sparse Way. 3rd Edition. Academic Press, 2008. 832 p.
  25. 25. Дремин И.М., Иванов О.В., Нечитайло В.А. // Успехи физ. наук. 2001. Т. 171. № 5. С. 465. https://doi.org/10.3367/UFNr.0171.200105a.0465
  26. 26. Welstead S. Fractal and Wavelet Image Compression Techniques. SPIE Publications, 1999. 254 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library