RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Symmetrical diynylic N-arylcarbamate molecules with different numbers of CH2 groups in spacers

PII
10.31857/S0023476124050123-1
DOI
10.31857/S0023476124050123
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
858-865
Abstract
The photopolymerization of Langmuir-Schaefer films of diacetylene N-arylcarbamate symmetrical molecules containing different numbers of methylene groups in the molecules was studied. The result of diyne films UV irradiation was the effective transition of the films into the stable state of blue phase polydiacetylene. The number of CH2 groups in the molecules affected the efficiency of the monomers film transition into the polymer and the conjugation length of the polymer chains. Studying the morphology of the films using scanning electron microscopy showed the horizontal position of diyne molecules on the substrates in the state of domains, the sizes of which depended on the number of CH2 groups in the molecules.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Wegner G. // Z. Naturforsch. B. 1969. V. 24. P. 824. https://doi.org/10.1515/znb-1969-0708
  2. 2. Vinogradov G.A. // Russ. Chem. Rev. 1984. V. 53. № 1. P. 77.
  3. 3. Polydiacetylenes: Synthesis, Structure and Electronic Properties / Eds. Bloor D., Chance R. 1985. 409 p.
  4. 4. Kruchinin V.N., Repinsky S.M., Sveshnikova L.L // Thin Solid Films. 1994. V. 240. P. 131.
  5. 5. Kim T., Ye Q., Sun I. et al. // Langmuir. 1996. V. 12. P. 6065. https://doi.org/10.1021/la960810h
  6. 6. Langmuir-Blodgett Films / Ed. Roberts G. New York: Plenum Press, 1990. P. 425.
  7. 7. Tieke B., Lieser G., Wegner G. // J. Polym. Sci. Polym. Chem. Ed. 1979. V. 17. P. 1631.
  8. 8. Tamura H., Mino N., Ogawa K. // Thin Solid Films. 1989. V. 179. P. 33.
  9. 9. Patel G.N., Khanna Y.P., Ivory D.M. et al. // J. Polym. Sci. Polym. Phys. Ed. 1979. V. 17. P. 899. https://doi.org/10.1002/pol.1979.180170513
  10. 10. Zhong L., Zhu X., Duan P., Liu M. // J. Phys. Chem. B. 2010. V. 114. P. 8871. https://doi.org/10.1021/jp1020565
  11. 11. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2016. V. 612. P. 463. https://dx.doi.org/10.1016/j.tsf.2016.06.044
  12. 12. Alekseev A.S., Ivanov A.B., Klechkovskaya V.V. et al. // Rev. Adv. Chem. 2023. V. 13. № 3. P. 265. https://doi.org/10.1134/S263482762360010X
  13. 13. Marinichev A.N., Vyaz’min S. Yu., Domnin I.N. // Russ. J. Appl. Chem. 2005. V. 78. № 10. P. 1662.
  14. 14. Alekseev A.S., Vyaz’min S. Yu., Ivanov A.B. et al. // Crystallography Reports. 2024. V. 69. № 4. P. 541 https://doi.org/10.1134/S1063774524600455
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library