RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Nanowires made of ternary alloys – synthesis features and magnetic properties

PII
10.31857/S0023476124050132-1
DOI
10.31857/S0023476124050132
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
866-875
Abstract
Nanowires of FexCoyCu(100–x–y) and FexNiyCu(100–x–y) alloys have been studied. The features of obtaining such structures by the matrix synthesis method have been investigated. Elemental analysis of nanowires grown at sequentially increasing voltages revealed a significant decrease in the amount of copper, as well as a change in the ratio of the main magnetic elements. X-ray phase analysis showed that FeCoCu is a three-component solid solution, while FeNiCu contains three phases of solid solutions: FeCu with copper content up to 80%, FeNi with high iron content, and NiCu in an amorphous or fine-crystalline state with nickel content up to 80%. Mössbauer spectroscopy revealed that the addition of copper can lead to a change in the angle of magnetic moment misalignment in nanowires, which correlates with magnetometry data.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Tabrett C.P., Sare I.R., Ghomaschi M.R. // Int. Mater. Rev. 1996. V. 41. № 2. P. 59. https://doi.org/10.1179/imr.1996.41.2.59
  2. 2. Hume-Rothery F.R.S.W., Coles B.R. // Adv. Phys. 1954. V. 3. № 10. P. 149. https://doi.org/10.1080/00018735400101193
  3. 3. Jiles D.C. // J. Phys. D: Appl. Phys. 1994. V 27. № 1. P. 1. https://doi.org/10.1088/0022-3727/27/1/001
  4. 4. Slater J.C. // J. Appl. Phys. 1937. V. 8. № 6. P. 385. https://doi.org/10.1063/1.1710311
  5. 5. James P., Eriksson O., Johanson B. et al. // Phys. Rev. B. 1999. V. 59. № 1. P. 419. https://doi.org/10.1103/PhysRevB.59.419
  6. 6. Cooper E.I., Bonhote C., Heidmann J. et al. // IBM J. Res. Dev. 2005. V. 49. № 1. P. 103. https://doi.org/10.1147/rd.491.0103
  7. 7. Bran C., Ivanov Yu.P., García J. et al. // J. Appl. Phys. 2013. V. 114. № 4. P. 043908. https://doi.org/10.1063/1.4816479
  8. 8. Palmero E.M., Salikhov R., Wiedwald U. et al. // Nanotechnology. 2016. V. 27. № 36. P. 365704. https://doi.org/10.1088/0957-4484/27/36/365704
  9. 9. Bran C., Palmero E.M., del Real R.P. et al. // Phys. Status Solidi. A. 2014. V. 211. № 5. P. 1076. https://doi.org/10.1002/pssa.201300766
  10. 10. Хайретдинова Д.Р., Долуденко И.М., Панина Л.В. и др. // ФТТ. 2022. Т. 64. № 9. С. 1144. https://doi.org/10.21883/FTT.2022.09.52798.24HH
  11. 11. Глинка Н.Л. // Общая химия. М.: Интеграл пресс, 2008. С. 281.
  12. 12. Mansouri N., Benbrahim-Cherief N., Chainet E. et al. // J. Magn. Magn. Mater. 2020. V. 493. P. 165746. https://doi.org/10.1016/j.jmmm.2019.165746
  13. 13. Долуденко И.М. // Перспективные материалы. 2021. № 8. С. 74. https://doi.org/10.30791/1028-978X-2021-8-74-80
  14. 14. Загорский Д.Л., Долуденко И.М., Хайретдинова Д.Р. // Мембраны и мембранные технологии. 2023. Т. 13. № 2. С. 137. https://doi.org/10.31857/S2218117223020074
  15. 15. Ahmad N., Shafiq M.Z., Khan S. et al. // J. Supercond. Nov. Magn. 2020. V. 33. P. 1495. https://doi.org/10.1007/s10948-019-05394-0
  16. 16. Shuai L., Liuting Z., Fuying W. et al. // Chinese Chem. Lett. 2024. P. 109566. https://doi.org/10.1016/j.cclet.2024.109566.
  17. 17. Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 5. С. 297. https://doi.org/10.7868/S0370274X17050095
  18. 18. Загорский Д.Л., Фролов К.В., Бедин С.А. и др. // ФТТ. 2018. Т. 60. № 11. С. 2075. https://doi.org/10.21883/FTT.2018.11.46642.08NN
  19. 19. Долуденко И.М., Загорский Д.Л., Фролов К.В. и др. // ФТТ. 2020. Т. 62. № 9. С. 1464. https://doi.org/10.21883/FTT.2020.09.49772.04H
  20. 20. Frolov K.V., Chuev M.A., Lyubutin I.S. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165415. https://doi.org/10.1016/j.jmmm.2019.165415
  21. 21. Valderruten J.F., Alcázar G.A.P., Greneche J.M. // J. Phys.: Condens. Matter. 2008. V. 20. № 48. P. 485204. https://doi.org/10.1088/0953-8984/20/48/485204
  22. 22. Chien C.L., Liou S.H., Kofalt D. et al. // Phys. Rev. B. 1986. V. 33. № 5. P. 3247. https://doi.org/10.1103/PhysRevB.33.3247.
  23. 23. Miedema A. // Int. J. Mater. Res. 1979. V. 70. № 6. P. 345. https://doi.org/10.1515/ijmr-1979-700601
  24. 24. Klassert A., Tikana L. // Corrosion behaviour and protection of copper and aluminium alloys in seawater. Cambridge: Woodhead Publishing Ltd, 2007. P. 47.
  25. 25. Банных О.А., Будберг П.Б., Алисова С.П. и др. Диаграммы состояния двойных и многокомпонентных систем на основе железа. М.: Металлургия, 1986. 440 c.
  26. 26. Шухардин С.В. Двойные и многокомпонентные системы на основе меди. М.: Наука, 1979. 248 с.
  27. 27. Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2014. Т. 99. № 9. С. 6556. https://doi.org/10.7868/S0370274X14100038
  28. 28. Campbell S.J., Clark P.E., Liddell P.R. // J. Phys. F: Met. Phys. 1972. V. 2. № 5. P. L114. https://doi.org/10.1088/0305-4608/2/5/006
  29. 29. Herr U., Jing J., Gonser U. et al. // Solid State Commun. 1990. V. 76. № 2. P. 197. https://doi.org/10.1016/0038-1098 (90)90542-J
  30. 30. Roy M.K., Verma H.C. // J. Magn. Magn. Mater. 2004. V. 270. № 1–2. P. 186. https://doi.org/10.1016/j.jmmm.2003.08.017
  31. 31. Verma H.C. // Indian J. Pure Ap. Phys. 2006. V. 45. P. 851.
  32. 32. Gavriliuk A.G., Aksenov S.N., Sadykov R.A. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 12. С. 16. https://doi.org/10.7868/S0207352814120087
  33. 33. Carignan L.-P., Lacroix C., Ouimet A. et al. // J. Appl. Phys. 2007. V. 102. № 2. P. 023905. https://doi.org/10.1063/1.2756522
  34. 34. Araujo E., Encinas A., Velasquez-Galvan Y. et al. // Nanoscale. 2015. V. 7. № 4. P. 1485. https://doi.org/10.1039/C4NR04800H
  35. 35. Burks E.C., Gilbert D.A., Murray P.D. et al. // Nano Lett. 2020. V. 21. № 1. P. 716. https://doi.org/10.1021/acs.nanolett.0c04366
  36. 36. Panina L.V., Zagorskiy D.L., Shymskaya A. et al. // Phys. Status Solidi. A. 2022. V. 219. № 3. P. 2100538. https://doi.org/10.1002/pssa.202100538
  37. 37. Younes A., Dilmi N., Khorchef M. et al. // Appl. Surf. Sci. 2018. V. 446. P. 258. https://doi.org/10.1016/j.apsusc.2017.12.160
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library