ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Проверка применимости крупнозернистого силового поля MARTINI для моделирования белковых олигомеров в кристаллизационном растворе

Код статьи
10.31857/S0023476124050159-1
DOI
10.31857/S0023476124050159
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 5
Страницы
885-890
Аннотация
В кристаллизационных условиях смоделирована молекулярная динамика двух типов октамеров лизоцима в крупнозернистом силовом поле MARTINI. Сравнительный анализ полученных результатов с данными моделирования этих же октамеров в полноатомном поле Amber99sb-ildn показал, что октамер А демонстрирует бóльшую стабильность по сравнению с октамером В в обоих силовых полях. Таким образом, результаты моделирования молекулярной динамики октамеров с помощью обоих силовых полей согласуются. Несмотря на ряд различий в поведении белка в разных полях, они не влияют на справедливость данных, полученных с помощью MARTINI. Это подтверждает применимость силового поля MARTINI для изучения кристаллизационных растворов белков.
Ключевые слова
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
10

Библиография

  1. 1. Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. № 4. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
  2. 2. Marchenkova M.A., Volkov V.V., Blagov A.E. et al. // Crystallography Reports. 2016. V. 61. № 1. P. 5. https://doi.org/10.1134/S1063774516010144
  3. 3. Boikova A.S., D’yakova Y.A., Il’ina K.B. et al. // Crystallography Reports. 2018. V. 63. № 6. P. 865. https://doi.org/10.1134/S1063774518060068
  4. 4. Kovalchuk M.V., Boikova A.S., Dyakova Y.A. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. № 12. P. 3058. https://doi.org/10.1080/07391102.2018.1507839.
  5. 5. Marchenkova M.A., Konarev P.V., Rakitina T.V. et al. // J. Biomol Struct. Dyn. V. 38. № 10. P. 2939. https://doi.org/10.1080/07391102.2019.1649195
  6. 6. Marchenkova M.A., Boikova A.S., Ilina K.B. et al. // Acta Naturae. 2023. V. 15. № 1. P. 58. https://doi.org/10.32607/ACTANATURAE.11815
  7. 7. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystallography Reports. 2018. V. 63. № 6. P. 947. https://doi.org/10.1134/S1063774518060196
  8. 8. Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A., Konarev P.V. // Crystals. 2022. V. 12. № 4. P. 484. https://www.mdpi.com/2073-4352/12/4/484
  9. 9. Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Mend. Commun. 2023. V. 33. № 2. P. 225. https://doi.org/10.1016/J.MENCOM.2023.02.024
  10. 10. Cerutti D.S., Le Trong I., Stenkamp R.E., Lybrand T.P. // Biochemistry. 2008. V. 47. № 46. P. 12065. https://doi.org/10.1021/bi800894u
  11. 11. Cerutti D.S., Le Trong I., Stenkamp R.E., Lybrand T.P. // J. Phys. Chem. B. 2009. V. 113. № 19. P. 6971. https://pubs.acs.org/doi/full/10.1021/jp9010372
  12. 12. Cerutti D.S., Freddolino P.L., Duke R.E., Case D.A. // J. Phys. Chem. B. 2010. V. 114. № 40. P. 12811. https://doi.org/10.1021/jp105813j
  13. 13. Taudt A., Arnold A., Pleiss J. // Phys. Rev. E. 2015. V. 91. № 3. P. 033311. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.033311
  14. 14. Meinhold L., Merzel F., Smith J.C. // Phys. Rev. Lett. 2007. V. 99. № 13. P. 138101. https://doi.org/10.1103/PhysRevLett.99.138101
  15. 15. Marrink S.J., Periole X., Tieleman D.P., De Vries A.H. // Phys. Chem. Chem. Phys. 2010. V. 12. № 9. P. 225. https://doi.org/10.1039/B915293H
  16. 16. Marrink S.J., Risselada H.J., Yefimov S. et al. // J. Phys. Chem. B. 2007. V. 111. № 27. P. 7812. https://pubs.acs.org/doi/full/10.1021/jp071097f
  17. 17. Monticelli L., Kandasamy S.K., Periole X. et al // J. Chem. Theory Comput. 2008. V. 4. № 5. P. 819. https://pubs.acs.org/doi/abs/10.1021/ct700324x
  18. 18. Marrink S.J., Monticelli L., Melo M.N. et al. // Wiley Interdiscip Rev. Comput. Mol. Sci. 2022. V. 13. № 1. P. e1620. https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1620
  19. 19. Kroon P.C., Grünewald F., Barnoud J. et al. // 2022. https://arxiv.org/abs/2212.01191v3
  20. 20. Souza P.C.T., Alessandri R., Barnoud J. et al. // Nature Methods. 2021. V. 18. № 4. P. 382. https://www.nature.com/articles/s41592-021-01098-3
  21. 21. Van Der Spoel D., Lindahl E., Hess B. et al. // J. Comput. Chem. 2005. V. 26. № 16. P. 1701. https://doi.org/10.1002/jcc.20291
  22. 22. Wassenaar T.A., Ingólfsson H.I., Böckmann R.A. et al. // J. Chem. Theory Comput. 2015. V. 11. № 5. P. 2144. https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00209
  23. 23. Bernetti M., Bussi G. // J. Chem. Phys. 2020. V. 153. № 11. Р. 114107. https://doi.org/10.1063/5.0020514
  24. 24. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://doi.org/10.1063/1.448118
  25. 25. Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. № 5. P. 2662. https://doi.org/10.1063/1.443248
  26. 26. Van Gunsteren W.F., Berendsen H.J.C. // Mol. Simul. 1988. V. 1. № 3. P. 173. https://doi.org/10.1080/08927028808080941
  27. 27. Hünenberger P.H., Van Gunsteren W.F. // J. Chem. Phys. 1998. V. 108. № 15. P. 6117. https://doi.org/10.1063/1.476022
  28. 28. Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. // J. Comput. Chem. 1997. V. 18. P. 1463. https://doi.org/10.1002/ (SICI)1096-987X(199709)18:123.0.CO;2-H
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека