RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Defect crystal structure of α-Na0.5–xR0.5+xF2+2x (R = Dy–Lu, Y) on X-Ray and electron diffraction data. II. Defect structure of the α-Na0.4R0.6F2.2 (R = Ho–Lu, Y) nanostructured crystals

PII
10.31857/S0023476124060034-1
DOI
10.31857/S0023476124060034
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
938-953
Abstract
The α-Na0.4R0.6F2.2 crystals (R = Ho–Lu, Y) were studied by X-ray diffraction analysis at 293 and 85 K. A unified cluster model of nanostructured crystals with a fluorite-type structure based on the polymorphism of KR3F10 (R = Er, Yb) was used to model their defect structure. The α-Na0.4R0.6F2.2 matrix component contained Na+ and R3+ in a ratio of 1 : 1. Part of the matrix anions was shifted from 8c to 32f position (sp. gr. Fm3m). Excess R3+ cations formed with Na+ octa-cubic clusters with nuclei in the form of cuboctahedra {F12} formed by interstitial anions at the 48i position. The α-Na0.4R0.6F2.2 cluster component was formed by octa-cubic clusters of type i. The electron diffraction method showed that the clusters had the shape of plates about 5 nm thick with superstructural ordering. Their structural model based on the K0.265Gd0.735F2.47 structure was proposed. For the first time, experimental confirmation of the affiliation of α-Na0.5–xR0.5+xF2+2x to nanostructured crystals was obtained by electron diffraction. When the temperature decreases from 293 to 85 K, the type of cluster component of the defect α-Na0.4R0.6F2.2 structure with R = Ho–Lu, and Y was not change. At 293 K, the boundary of the type change of the defect structure in the α-Na0.5–xR0.5+xF2+2x series was located between R = Dy (with the Z = 66 atomic number) and Ho (with Z = 67). When the temperature drops from 293 to 85 K, the position of the boundary was not change.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Сульянова Е.А., Соболев Б.П., Николайчик В.И. и др. // Кристаллография. 2024. Т. 69. № 5. С. 772. https://doi.org/10.31857/S0023476124050036
  2. 2. Sulyanova E.A., Sobolev B.P. // CrystEngComm. 2022. V. 24. P. 3762. https://doi.org/10.1039/D2CE00280A
  3. 3. Sulyanova E.A., Sobolev B.P. // J. Phys. Chem. C. 2024. V. 128. № 10. P. 4200. https://doi.org/10.1021/acs.jpcc.3c08137
  4. 4. Соболев Б.П., Минеев Д.А., Пашутин В.П. // Докл. АН СССР. 1963. Т. 150. № 4. С. 791.
  5. 5. Liu Y., Lu Y., Yang X. et al. // Nature. 2017. V. 543. P. 229. https://doi.org/10.1038/nature21366
  6. 6. Oleksa V., Mackova H., Engstova H. et al. // Sci. Rep. 2021. V. 11. P. 21273. https://doi.org/10.1038/s41598-021-00845-y
  7. 7. Chen G., Shen j., Ohulchanskyy T.Y. et al. // ACS Nano. 2012. V. 6. № 9. P. 8280. https://doi.org/10.1021/nn100457j
  8. 8. Tan M., del Rosal B., Zhang Y. et al. // Nanoscale. 2018. V. 10. P. 17771. https://doi.org/10.1039/C8NR02382D
  9. 9. Quintanilla M., Hemmer E., Marques-Hueso J. et al. // Nanoscale. 2022. V. 14. P. 1492. https://doi.org/10.1039/d1nr06319g
  10. 10. Pontonnier L., Patrat G., Aleonard S. et al. // Solid State Ionics. 1983. V. 9–10. № 1. P. 549. https://doi.org/10.1016/0167-2738 (83)90293-X
  11. 11. Pontonnier L. Relations entre la Structure et les Proprietés de Conductivite Ionique des Solutions Solides à Structure Fluorine Excendentaire en Anions Na0.5–xY0.5+xF2+2x. These. Grenoble, 1985. 196 p.
  12. 12. Pontonnier L., Aleonard S., Roux M.T. // J. Solid State Chem. 1987. V. 69. № 1. P. 10. https://doi.org/10.1016/0022-4596 (87)90003-X
  13. 13. Pontonnier L., Patrat G., Aleonard S. // J. Solid State Chem. 1990. V. 87. № 1. P. 124. https://doi.org/10.1016/0022-4596 (90)90073-7
  14. 14. Журова Е.А., Максимов Б.А., Халл С. и др. // Кристаллография. 1997. Т. 42. № 2. С. 277.
  15. 15. Otroshchenko L.P., Fykin L.E., Bystrova A.A. et. al. // Crystallography Reports. 2000. V. 45. № 6. P. 926.
  16. 16. Кривандина Е.А., Быстрова А.А., Соболев Б.П. и др. // Кристаллография. 1992. Т. 37. № 6. С. 1523.
  17. 17. Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Barcelona: Institut d’Estudis Catalans, 1994. 265 p.
  18. 18. Petricek V., Palatinus L., Plášil J., Dusek M. // Z. Kristallogr. 2023. V. 238. № 7–8. P. 271. https://doi.org/10.1515/zkri-2023-0005
  19. 19. Becker P.J., Coppens P. // Acta Cryst. A. 1974. V. 30. P. 129. https://doi.org/10.1107/S0567739474000337
  20. 20. International Tables for Crystallography V.C. / Ed. Wilson A.J.C. Dordrecht; Boston; London: Kluwer Acad. Publ., 1992.
  21. 21. Соболев Б.П., Голубев А.М., Эрреро П. // Кристаллография. 2003. Т. 48. № 1. С. 148.
  22. 22. Казанский С.А. // Письма в ЖЭТФ. 1983. Т. 38. № 9. P. 430.
  23. 23. Aleonard S., Guitel J.C., Roux M. Th. // J. Solid State Chem. 1978. V. 24. P. 331. https://doi.org/10.1016/0022-4596 (78)90024-5
  24. 24. Aleonard S., Guitel J.C., Le FurY. et al. // Acta Cryst. B. 1976. V. 32. № 12. P. 3227. https://doi.org/10.1107/S0567740876010005
  25. 25. Мурадян Л.А., Максимов Б.А., Симонов В.И. // Координац. химия. 1986. Т. 12. № 10. С. 1398.
  26. 26. Le Fur Y., Khaidukov N.M., Aleonard S. // Acta Cryst. C. 1992. V. 48. P. 978. https://doi.org/10.1107/S010827019101394X
  27. 27. Grzechnik A., Khaidukov N., Friesec K. // Dalton Trans. 2013. V. 42. P. 441. https://doi.org/10.1039/C2DT31483E
  28. 28. Sobolev B.P., Sulyanova E.A. // Int. J. Mol. Sci. 2023. V. 24. № 23. P. 17013. https://doi.org/10.3390/ijms242317013
  29. 29. Le Fur Y., Aleonard S., Gorius M.F. et al. // Z. Kristallogr. 1988. V. 182. P. 281. https://doi.org/10.1524/zkri.1988.182.14.281
  30. 30. Maksimov B.A., Solans Kh., Dudka A.P. et al. // Crystallography Reports. 1996. V. 41. P. 56.
  31. 31. Achary S.N., Patwe S.J., Tyagi A.K. // Powder Diffr. 2002. V. 17. № 3. P. 225. https://doi.org/10.1154/1.1477198
  32. 32. Сульянова Е.А., Молчанов В.Н., Верин И.А. и др. // Кристаллография. 2009. Т. 54. № 3. С. 554. https://doi.org/10.1134/S1063774509030249
  33. 33. Сульянова Е.А., Верин И.А., Соболев Б.П. // Кристаллография. 2012. Т. 57. № 1. С. 79. https://doi.org/10.1134/S1063774512010130
  34. 34. Федоров П.П., Александров В.Б., Бондарева О.С. и др. // Кристаллография. 2001. Т. 46. № 2. С. 280.
  35. 35. Gleiter H. // Acta Mater. 2000. V. 48. P. 1. https://doi.org/10.1016/S1359-6454 (99)00285-2
  36. 36. Vogt T. // Neues Jahrb. Mineral. 1914. V. 2. № 1. P. 9.
  37. 37. Goldschmidt V.M., Barth T., Lunde G. et al. Geochemische Verteilungsgesetze der Elemente. Part VII. Die Gesetze der Chrysatllochemie; Jacob Dybwad, Kristiania: Oslo, 1926. V. 7. P. 1.
  38. 38. Александров В.Б., Гарашина Л.С. // Докл. АН СССР. 1969. Т. 189. № 2. С. 307.
  39. 39. Cheetham A.K., Fender B.E.F., Steele D. et al. // Solid State Commun. 1970. V. 8. № 3. P. 171. https://doi.org/10.1016/0038-1098 (70)90073-6
  40. 40. Cheetham A.K., Fender B.E.F., Cooper M.J. // J. Phys. C. 1971. V. 4. № 18. P. 3107. https://doi.org/10.1088/0022-3719/4/18/016
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library