- PII
- 10.31857/S0023476124060052-1
- DOI
- 10.31857/S0023476124060052
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 6
- Pages
- 960-970
- Abstract
- A comparative study of the characteristics of high-molecular organic matter (cotton lint) subjected to pyrolytic carbonisation under conditions of high-intensity microwave radiation in various gaseous media (N2, CO2, Ar) has been conducted. The methods employed included the determination of adsorption activity through the use of a methylene blue indicator, X-ray fluorescence analysis, transmission electron microscopy with microanalysis, and X-ray phase analysis. Electrodes derived from carbon materials produced through microwave carbonisation with varying gases were constructed, and symmetric cells were assembled in accordance with the two-electrode configuration. The electrochemical properties were investigated using cyclic voltammetry and galvanostatic charge-discharge methods. The results demonstrated that the materials obtained using a CO₂ gaseous medium exhibited the most optimal characteristics.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Савельева Ю.Р., Кряжов А.Н., Богомолов М.С. и др. // Химия растительного сырья. 2003. № 4. С. 61.
- 2. Yakout S., El-Deen G.S. // Arab. J. Chem. 2016. V. 9. P. 1155. https://doi.org/10.1016/j.arabjc.2011.12.002
- 3. Kosheleva R.I., Mitropoulos A.C., Kyzas G.Z. // Environ. Chem. Lett. 2019. V. 17. P. 429. https://doi.org/10.1007/s10311-018-0817-5
- 4. Yahya M.A., Al-Qodah Z., Ngah C.W.Z. // Renew. Sust. Energ. Rev. 2015. V. 46. P. 218. https://doi.org/10.1016/j.rser.2015.02.051
- 5. Асадчиков В.Е., Дьячкова И.Г., Золотов Д.А. и др. // Кристаллография. 2022. Т. 67. № 4. С. 597. https://doi.org/10.31857/S002347612204004X
- 6. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // Успехи физ. наук. 2023. T. 193. № 12. C. 1325. https://doi.org/10.3367/UFNr.2023.02.039323
- 7. Villota E.M., Lei H., Qian M. et al. // ACS Sustainable Chem. Eng. 2018. V. 6. № 1. P. 1318. https://doi.org/10.1021/acssuschemeng.7b03669
- 8. Gopinath A., Kadirvelu K. // Environ. Chem. Lett. 2018. V. 16. P. 1137. https://doi.org/10.1007/s10311-018-0740-9
- 9. ГОСТ 4453-74 “Уголь активный осветляющий древесный порошкообразный: технические условия”: Государственный стандарт Союза ССР: дата введения 01.01.1976. М.: Издательство стандартов, 1993. 21 с.
- 10. Асадчиков В.Е., Бузмаков А.В., Дымшиц Ю.М. и др. Установка для топо-томографических исследований образцов. Пат. № 2674584 (Россия). 2018.
- 11. Gates-Rector S., Blanton T. // Powder Diffr. 2019. V. 34. № 4. P. 352. https://doi.org/10.1017/S0885715619000812
- 12. Ardizzone S., Fregonara G., Trasatti S. // Electrochim. Acta. 1990. V. 35. № 1. P. 263. https://doi.org/10.1016/0013-4686 (90)85068-X
- 13. Bartelmess J., Giordani S. // Beilstein J. Nanotechnol 2014. V. 5. № 1. P. 1980. https://doi.org/10.3762/bjnano.5.207
- 14. Zeiger M., Jäckel N., Mochalin V.N., Presser V. // J. Mater. Chem. A. 2016. V. 4. № 9. P. 3172. https://doi.org/10.1039/c5ta08295a
- 15. Дьячкова И.Г., Золотов Д.А., Кумсков А.С. и др. // ЖТФ. 2024. T. 94. № 6. C. 871. https://doi.org/10.61011/JTF.2024.06.58128.266-23
- 16. Trucano P., Chen R. // Nature. 1975. V. 258. P. 136. https://doi.org/10.1038/258136a0
- 17. Kratschmer W., Lamb L., Fostiropoulos K., Huffman D. // Nature. 1990. V. 347. P. 354. https://doi.org/10.1038/347354a0
- 18. Rao G.N., Sastry V.S., Premila M. et al. // Powder Diffr. 1996. V. 11. № 1. P. 5. https://doi.org/10.1017/S0885715600008782
- 19. Самонин В.В., Никонова В.Ю., Ким А.Н., Грун Н.А. // Изв. СПбГТИ (ТУ). 2010. № 8. С. 77.
- 20. Березкин В.И., Викторовский И.В., Вуль А.Я. и др. // Физика и техника полупроводников. 2003. Т. 37. № 7. С. 802.
- 21. Fayos J. // J. Solid State Chem. 1999. V. 148. № 2. P. 278. https://doi.org/10.1006/jssc.1999.8448
- 22. Correia S.F., Fu L., Dias L.M. et al. // Nanoscale Adv. 2023. V. 5. № 13. P. 3428. https://doi.org/10.1039/d3na00136a