- PII
- 10.31857/S0023476124060089-1
- DOI
- 10.31857/S0023476124060089
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 6
- Pages
- 987-997
- Abstract
- A subunit vaccine against the African swine fever virus (ASF) has been designed using immunoinformatics and molecular dynamics methods. The three-dimensional structure of the selected immunogenic protein of the ASF-CD2v virus was modelled, and its topology relative to the membrane was predicted. B- and T-cell epitopes for the supramembrane part of CD2v were predicted, and their immunogenicity, allergenicity, and toxicity were evaluated. In order to facilitate the development of a subunit vaccine, the least variable site was identified on the basis of an analysis of the conservatism of the predicted epitopes. The stability of the selected supramembrane site in an aqueous salt solution was evaluated using molecular dynamics methods, and it was demonstrated that the site is structurally stable. The immunomodulation method has demonstrated that the developed candidate vaccine is capable of eliciting a sustained immune response and does not result in the development of a cytokine storm.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Revilla Y., Pérez-Núñez D., Juergen A. // Adv. Virus Res. 2018. V. 100. P. 41. https://doi.org/10.1016/bs.aivir.2017.10.002
- 2. Россельхознадзор. Африканская чума свиней. https://fsvps.gov.ru/jepizooticheskaja – situacija/rossija/jepidsituacija-po-achs-v-rossijskoj-federacii/hronologija-achs/
- 3. Liu Q., Ma B., Qian N. et al. // Cell Res. 2019. V. 29. P. 953. https://doi.org/10.1038/s41422-019-0232-x
- 4. Ros-Lucas A., Correa-Fiz F., Bosch-Camós L., Rodriguez F. // Pathogens. 2020. V. 9. P. 1078. https://doi.org/10.3390/pathogens9121078
- 5. Blome S., Franzke K., Beer M. // Virus Res. 2020. V. 287. № 198099. https://doi.org/10.1016/j.virusres.2020.198099
- 6. Borca M.V., Ramirez-Medina E., Silva E. et al. // Viruses. 2020. V. 13 (5). P. 765. https://doi.org/10.3390/v13050765
- 7. Lewis T., Zsak L., Burrage T.G. et al. // J. Virol. 2000. V. 74 (3). P. 1275.
- 8. Monteagudo P.L., Lacasta A., Lopez E. et al. // J. Virol. 2017. V. 91 (21). https://doi.org/10.1128/JVI.01058-17
- 9. Moore D.M., Zsak L., Neilan J.G. et al. // J. Virology. 1998. V. 72 (12). P. 10310.
- 10. O'Donnell V., Holinka L.G., Gladue D.P. et al. // J. Virol. 2015. V. 89 (11). P.6048. https://doi.org/10.1128/JVI.00554-15
- 11. O'Donnell V., Risatti G.R., Holinka L.G. et al. // J. Virol. 2017. V. 91 (1). https://doi.org/10.1128/JVI.01760-16
- 12. Reis A.L., Goatley L.C., Jabbar T. et al. // J. Virol. 2017. V. 91. P. 24. https://doi.org/10.1128/JVI.01428-17
- 13. Sanchez-Cordon P.J., Jabbar T., Berrezaie M. et al. // Vaccine. 2018. V. 36 (5). P. 707. https://doi.org/10.1016/j.vaccine.2017.12.030
- 14. Tran X.H., Le T.T.P., Nguyen Q.H. et al. // Transbound. Emerg. Dis. 2022. V. 69. P. 497. https://doi.org/10.1111/tbed.14329
- 15. Алексеев К.П., Раев С.А., Южаков А.Г. и др. // Сельхозбиология. 2019. Т. 54 (6). С. 1236. https://doi.org/10.15389/agrobiology.2019.6.1236rus
- 16. Purcell A., McCluskey J., Rossjohn J. // Nat. Rev. Drug Discov. 2007. V. 6. P. 404. https://doi.org/10.1038/nrd2224
- 17. Шамсутдинова О.А. // Инфекция и иммунитет. 2017. Т. 7. № 2. C. 107. https://doi.org/10.15789/2220-7619-2017-2-107-116
- 18. Moyle P.M., Toth I. // ChemMedChem. 2013. V. 8. P. 360. https://doi.org/10.1002/cmdc.201200487
- 19. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomol. Struct. Dyn. 2022. V. 40 (16). P. 7283. https://doi.org/10.1080/07391102.2021.1896387
- 20. Adekunle B.R., Angus Nnamdi Oli, Mercy Titilayo Asala et al. // Veterinary Vaccine. 2023. V. 2 (1). P. 2772. https://doi.org/10.1016/j.vetvac.2023.100013
- 21. Rakitina T.V., Smirnova E.V., Podshivalov D.D. et al. // Crystals. 2023. V. 13. P. 1416. https://doi.org/10.3390/cryst13101416
- 22. Zhang M., Lv L., Luo H. et al. // Vet. Res. 2023. V. 54. P. 106. https://doi.org/10.1186/s13567-023-01239-w
- 23. Чернышев Р.С., Спрыгин А.В., Иголкин А.С. и др. // Сельскохозяйственная биология. 2022. T. 57. № 4. С. 609. https://doi.org/10.15389/agrobiology.2022.4.609rus
- 24. Колесников И.А., Тимиофеев В.И., Ермаков А.В. и др. // Кристаллография. 2023. Т. 68. № 6. C. 971. https://doi.org/10.31857/S0023476123600179
- 25. Ивановский А.С., Колесников И.А., Кордонская Ю.В. и др. // Кристаллография. 2023. Т. 68. № 6. C. 979. https://doi.org/10.31857/S0023476123600805
- 26. A0A7T0LXP0 // UniProtKB. https://www.uniprot.org/uniprotkb
- 27. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596.P. 583. https://doi.org/10.1038/s41586-021-03819-2
- 28. Jeppe H., Trigos K.D., Pedersen M.D. et al. // ВioRxiv. 2022.№ 487609. https://doi.org/10.1101/2022.04.08.487609
- 29. The PyMOL Molecular Graphics System, Version 3.0 Schrödinger, LLC. https://pymol.org/
- 30. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. P. 424.
- 31. https://doi.org/10.1186/1471-2105-8-424
- 32. Ponomarenko J., Bui HH., Li W. et al. // BMC Bioinformatics. 2008.V. 9. P. 514. https://doi.org/10.1186/1471-2105-9-514
- 33. Sudipto Saha, Raghava G.P.S. // Nucleic Acids Res. 2006. V. 34. P. 202.
- 34. https://doi.org/10.1093/nar/gkl343
- 35. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Brief Bioinform. 2022. V. 23 (5). P. 174. https://doi.org/10.1093/bib/bbac174.
- 36. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. P. 4. https://doi.org/10.1186/1471-2105-8-4
- 37. Altschul S.F., Gish W., Miller W. et al. // J. Mol. Biol. 1990. V. 215 (3). P. 403
- 38. Bui H., Sidney J.H., Li W. et al. // BMC Bioinformatics. 2007. V. 8 (1). P. 361. https://doi.org/10.1186/1471-2105-8-361
- 39. Rapin N., Lund O., Bernaschi M., Castiglione F. // PLoS One. 2010. V. 5 (4). P. 9862. https://doi.org/10.1371/journal.pone.0009862
- 40. Carvalho L., Sano Gi., Hafalla J. et al. // Nat. Med. 2002. V. 8. P. 166. https://doi.org/10.1038/nm0202-166
- 41. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
- 42. Parrinello M., Rahman A. // J. Chem. Phys. 1982. V. 76. P. 2662. https://doi.org/ 10.1063/1.443248
- 43. Hess B., Bekker H., Herman J.C. et al. // J. Comput. Chem. 1997. V. 18. P. 1463. https://doi.org/10.1002/ (SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
- 44. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98 (12). P. 10089. https://doi.org/10.1063/1.464397
- 45. Potocnakova L., Bhide M., Pulzova L.B. // J. Immunol. Res. 2016. № 6760830. https://doi.org/10.1155/2016/6760830