- PII
- 10.31857/S0023476124060116-1
- DOI
- 10.31857/S0023476124060116
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 6
- Pages
- 1009-1017
- Abstract
- The structure and defects of α-TeO2 paratellurite crystals have been studied using computer modeling. It has been shown that in α-TeO2 the preferred point defects are oxygen vacancies and interstitial oxygen ions. Oxygen vacancies can be either isolated or form complex clusters. It is energetically most favorable for interstitial oxygen ions to be located in channels that penetrate the paratellurite structure along the c-axis. The origin of possible oxygen–ion transport in α-TeO2 is discussed.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В. и др. // Кристаллография. 1987. Т. 32. С. 609.
- 2. Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022-3719/21/i=25/a=009
- 3. Дудка А.П., Головина Т.Г., Константинова А.Ф. // Кристаллография. 2019. Т. 64. С. 930. https://doi.org/10.1134/S0023476119060043
- 4. Ceriotti M., Pietrucci F., Bernasconi M. // Phys. Rev. B. 2006. V. 73. P. 104304. https://doi.org/10.1103/PhysRevB.73.104304
- 5. Champarnaud-Mesjard J.C., Blanchandin S., Thomas P. et al. // J. Phys. Chem. Solids. 2000. V. 61. P. 1499. https://doi.org/10.1016/S0022-3697 (00)00012-3
- 6. Малютин С.А., Саплавская К.К., Карапетьянц М.Х. // Журн. неорган. химии. 1971. Т. 16. С. 781.
- 7. Deringer V.L., Stoffel R.P., Dronskowski R. // Cryst. Growth Des. 2014. V. 14. P. 871. http://doi.org/10.1021/cg401822g
- 8. Uchida N., Ohmachi Y. // J. Appl. Phys. 1969. V. 40. P. 4692. https://doi.org/10.1063/1.1657275
- 9. Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://
- 10. Gupta N., Voloshinov V. // Opt. Lett. 2005. V. 30. P. 985. https://doi.org/10.1364/OL.30.000985
- 11. Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647
- 12. El-Mallawany R.A.H. Tellurite Glasses Handbook: Physical Properties and Data; CRC Press: Boca Raton, FL, 2002.
- 13. Li Y., Fan W., Sun H. et al. // J. Appl. Phys. 2010. V. 107. P. 093506. https://doi.org/10.1063/1.3406135
- 14. Liu Z., Yamazaki T., Shen Y. et al. // Appl. Phys. Lett. 2007. V. 90. P. 173119. https://doi.org/10.1063/1.2732818
- 15. Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950.
- 16. Куликов А.Г. // Образование приповерхностных структур в кристаллах парателлурита и тетрабората лития при миграции носителей заряда во внешнем электрическом поле. Дис. … канд. физ.-мат. наук. Москва. 2019.
- 17. Dick B.G., Overhauser A.W. // Phys. Rev. 1958. V. 112. P. 90.
- 18. Torzuoli L., Bouzid A., Thomas P., Masson O. // Mater. Res. Express. 2020. V. 7. P. 015202. https://doi.org/10.1088/2053-1591/ab6128
- 19. Mayo S.L., Olafson B.D., Goddard W.A. // J. Phys. Chem. 1990. V. 94. P. 8897. http://dx.doi.org/10.1021/j100389a010
- 20. Gulenko A., Masson O., Berghout A. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 14150. https://doi.org/10.1039/c4cp01273a
- 21. Achouri M.M., Ziani N., Bouamrane R., Abderrahmane A. // Indian J. Phys. 2018. V. 92. P. 1373. https://doi.org/10.1007/s12648-018-1232-2
- 22. Gale J.D., Rohl A.L. // Mol. Simul. 2003. V. 29. P. 291. http://dx.doi.org/10.1080/ 0892702031000104887
- 23. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1932. V. 34. P. 485.
- 24. Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076
- 25. Silvestrova I.M., Pisarevskii Y.V, Senycshenkov P.A. et al. // Phys. Status Solidi. А. 1987. V. 101. P. 437. https://doi.org/10.1002/pssa.2211010215
- 26. Ledbetter H., Leisure R.G., Migliori A. et al. // J. Appl. Phys. 2004. V. 96. P. 6201. https://doi.org/10.1063/1.1805717
- 27. Ohmachi Y., Uchida N. // J. Appl. Phys. 1970. V. 41. P. 2307. https://doi.org/10.1063/1.1659223
- 28. Jain H., Nowick A.S. // Phys. Status Solidi. А. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242
- 29. Mezaki R., Margrave J.L. // J. Phys. Chem. 1962. V. 62. P. 66. https://doi.org/10.1021/j100815a037
- 30. Pashinkin A.S., Rabinovich I.B., Sheiman M.S. et al. // J. Chem. Thermodynamics. 1985. V. 17. P. 43. https://doi.org/10.1016/0021-9614 (85)90030-8
- 31. Wegener J., Kanert О., Küchler R. et al. // Z. Naturforsch. А. 1994. B. 49. S. 1151. https://doi.org/10.1515/zna-1994-1208
- 32. Wegener J., Kanert O., Küchler R. et al. // Rad. Eff. Defects Solids. 1995. V. 114. P. 277.
- 33. Hartmann E., Kovács L. // Phys. Status Solidi. А. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105