— ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ *=*

УДК 544.622; 546.161

ВЕРХНЯЯ ГРАНИЦА ПОДВИЖНОСТИ И КОНЦЕНТРАЦИИ НОСИТЕЛЕЙ ЗАРЯДА ВО ФТОРИДНЫХ СУПЕРИОННЫХ ПРОВОДНИКАХ СО СТРУКТУРАМИ ФЛЮОРИТА И ТИСОНИТА

© 2024 г. Н.И. Сорокин^{1,*}

¹Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ "Курчатовский институт", Москва, Россия

> **E-mail: nsorokin1@yandex.ru* Поступила в редакцию 20.10.2023 г. После доработки 20.10.2023 г. Принята к публикации 14.12.2023 г.

В рамках кристаллофизической модели рассчитаны максимальные значения подвижности и концентрации носителей заряда во фторидных суперионных проводниках, принадлежащих структурным типам флюорита (CaF₂, SrF₂, BaF₂, PbF₂) и тисонита (LaF₃). Показано, что верхние границы ионной проводимости, подвижности и концентрации носителей заряда в кристаллическом состоянии фторидных супериоников составляют 4 ± 1 См/см, (5 ± 1) × 10⁻³ см²/(cB) и (5 ± 2) × × 10²¹ см⁻³ (10 ± 4% от общего количества ионов фтора) соответственно.

DOI: 10.31857/S0023476124030096, EDN: XOKVGL

ВВЕДЕНИЕ

Фториды, кристаллизующиеся в структурных типах флюорита (тип CaF_2) и тисонита (тип LaF_3), являются одними из лучших суперионных проводников с униполярной фтор-ионной электропроводностью [1–3]. Изучение их особенностей синтеза, дефектной структуры и свойств представляет особый интерес для химии и физики фторидов, фторидного материаловедения [4–6], сенсорики и химических источников тока [7–11].

Однако выполнение высокотемпературных электрофизических измерений фторидных кристаллов, находящихся в суперионном состоянии, затруднено из-за сильного негативного влияния реакции пирогидролиза на физические свойства неорганических фторидов в области высоких (T > 1000 K) температур. В настоящее время данные по высокотемпературной ионной проводимости доступны для ограниченного числа фторидных суперионных проводников [12–18].

Величина ионной проводимости кристаллов является интегральной характеристикой, зависящей от микроскопических параметров носителей заряда: подвижности и концентрации, частоты и расстояния прыжков, энтальпии активации ионного переноса. Для характеризации фторидных материалов с высокой анионной проводимостью важными параметрами являются максимальные значения подвижности (µ_{mob}) и концентрации (n_{mob}) носителей заряда, достигаемые в кристаллическом состоянии.

Цель настоящей работы — оценка предельной величины подвижности и концентрации ионных носителей в кристаллах фторидных суперионных проводников, принадлежащих структурным типам флюорита и тисонита.

РАСЧЕТ ПОДВИЖНОСТИ И КОНЦЕНТРАЦИИ НОСИТЕЛЕЙ ЗАРЯДА ВО ФТОРИДНЫХ СУПЕРИОННЫХ ПРОВОДНИКАХ

Расчет проводили для фторидов LiF (структурный тип поваренной соли), CaF₂, SrF₂, BaF₂, PbF₂ (тип флюорита), LaF₃ (тип тисонита), а также в качестве сравнения для хлорида SrCl₂ (тип флюорита). Структурные характеристики кристаллов приведены в табл. 1. Параметры элементарной ячейки фторидов взяты из [19, 20].

Полная концентрация ионов фтора в кристаллических структурах фторидов равна

$$n_{\rm F} = NZ/V_c,\tag{1}$$

где N — число фторов в химической формуле, Z — число формульных единиц, V_c — объем элементарной ячейки. Рассчитанные из структурных данных значения концентрации n_F для фторидов даны в табл. 1.

Кристалл	Симметрия	Параметры решетки, Å	Концентрация $n_{\rm F}$, $10^{22} {\rm cm}^{-3}$
LiF	$Fm\overline{3}m$ $Z=4$	a = 4.028	6.12
CaF ₂		<i>a</i> = 5.463	4.91
SrF ₂	Fm3m	a = 5.800	4.10
BaF ₂	Z = 4	a = 6.200	3.36
β-PbF ₂		<i>a</i> = 5.940	3.82
LaF ₃	$\begin{array}{c} P\overline{3}c1\\ Z=6 \end{array}$	a = 7.186 c = 7.350	5.48
α-LuF ₃	$P\overline{3}m1$ $Z = 1$	a = 4.018 c = 4.150	5.21
α-YF ₃	$\frac{P\overline{3}m1}{Z=1}$	a = 4.117 c = 4.225	4.84
SrCl ₂	$Fm\overline{3}m$ $Z = 4$	<i>a</i> = 6.978	2.35

Таблица 1. Симметрия, число формульных единиц (Z), параметры элементарной ячейки (a, c) и концентрация ионов фтора ($n_{\rm F}$) в кристаллах фторидных соединений

Постоянно-токовая электропроводность ионных кристаллов является макроскопической физической величиной, объединяющей микроскопические характеристики носителей заряда. В суперионных фторидных проводниках с униполярной анионной проводимостью она равна

$$\sigma_{\rm F} = q n_{mob} \mu_{mob}, \qquad (2)$$

где q, n_{mob} и μ_{mob} — заряд, концентрация и подвижность ионов проводимости соответственно. Для разделения вкладов в электропроводность $\sigma_{\rm F}$ от подвижности μ_{mob} и концентрации n_{mob} необходимо какую-либо из этих величин определить независимо. Отметим, что подвижность ионных носителей в суперионных кристаллах представляет самостоятельный научный интерес, поскольку характеризует микроскопическое движение ионов проводимости в кристаллической решетке по отношению к воздействию внешнего электрического поля. Предельные значения подвижности и концентрации ионных носителей определяют максимально достижимый уровень ионной электропроводности твердых тел.

В кристаллофизической модели "прыжкового" ионного транспорта (*anion motion by discrete jumps*) проводимость фторпроводящего кристалла и подвижность носителей заряда имеют вид [21]:

$$\sigma_{\rm F} = \gamma q^2 l_h^2 n_{mob} (1 - n/n_{mob}) v_h / kT, \qquad (3)$$

$$\mu_{mob} = \gamma q l_h^2 (1 - n/n_{mob}) v_h / kT, \qquad (4)$$

где γ — числовой множитель, *n* — концентрация структурных позиций для ионов фтора в кристалле, l_h и v_h — длина и частота прыжков ионов фтора соответственно.

Частота прыжков ионных носителей равна

$$v_h = V/l_h,\tag{5}$$

где *V* – средняя скорость их движения. Полагая выполнение закона сохранения энергии, имеем

$$mV^2/2 = 3kT/2,$$
 (6)

где масса иона фтора равна $m = 31.55 \times 10^{-27}$ кг = = 18.9984 а.е.м. Вблизи температуры плавления выполняется условие $n \gg n_{mob}$, тогда подвижность ионных носителей можно записать в виде

$$\mu_{mob} = \gamma q l_h \sqrt{(3/mkT)}.$$
(7)

Значения параметров n_{mob} и l_h определяются структурным механизмом ионного переноса в кристаллах.

Рассчитанные из уравнения (7) значения μ_{mob} для фторидов LiF, CaF₂, SrF₂, BaF₂, PbF₂, LaF₃ и хлорида SrCl₂ приведены в табл. 2. За температуру расчета принята температура плавления фторидов [14]. Структурные характеристики фторидных кристаллов взяты из [19, 20, 22, 23].

С другой стороны, подвижность носителей заряда можно оценить из уравнения Нернста–Эйнштейна, связывающего подвижность μ_F и коэффициент диффузии ионов фтора D_F :

$$\mu_{mob} = q D_{\rm F} / kT, \tag{8}$$

КРИСТАЛЛОГРАФИЯ том 69 № 3 2024

Кристалл Темпера	Температура <i>Т_{fus}</i> , К	Расстояние <i>l_h</i> (F–F), Å [19, 20, 22, 23]	Диффузия <i>D</i> _F , 10 ⁻⁵ см ² /с	Подвижность µ _{<i>mob</i>} , 10 ⁻³ см ² /(сВ)	
	[17]			по (7)	по (8)
LiF	1121	2.014		4.2	
CaF ₂	1691	2.731	3.84 ± 0.05 [13] 2.6 (1590 K) [24]	4.6	2.6 1.9
SrF ₂	1737	2.900		4.9	
BaF ₂	1627	3.100	8.8 [25]	5.4	6.3
β -PbF ₂	1098	2.970		6.3	
LaF ₃	1773	2.997		5.0	
SrCl ₂	1148	3.489		5.3	

Таблица 2. Расчет подвижности ионных носителей заряда во фторидных кристаллах

Таблица 3. Расчет концентрации ионных носителей заряда во фторидных кристаллах

Кристалл Темп	Takta and $T = V$ [10]	Проводимость σ, См/см	Концентрация	
	Temnepatypa T_{fus} , K [19]		$n_{mob}, \mathrm{CM}^{-3}$	$n_{mob}/n_{\rm F},\%$
LiF	1121	0.002 [16]	3×10^{18}	5×10^{-3}
CaF ₂	1691	$\begin{array}{c} 3.2 \ [14, \ 16] \\ 3.45 \pm 0.30 \ [18] \\ 3.56 \ [17] \\ 4.0 \ [12] \\ 5.1 \pm 0.2 \ [13] \end{array}$	$(4.3-6.9) \times 10^{21}$	8.9–14.1
SrF ₂	1737	4 [14] 4.2 [12]	$(5.1-5.4) \times 10^{21}$	12.4–13.1
BaF ₂	1627	3.9 [12]	4.5×10^{21}	13.4
β -PbF ₂	1098	4 [15]	4.0×10^{21}	10.4
LaF ₃	1773	2.6 [28]	3.2×10^{21}	5.9
α -LuF ₃	1455	2.6 [16]		
α-YF ₃	1425	0.5 [16]		
SrCl ₂	1148	1.3 [12] 1.8 [14]	$(1.5-2.1) \times 10^{21}$	6.5-9.0

где k — постоянная Больцмана, T — температура. В уравнении (8) исходными данными служат значения коэффициента диффузии ионов F⁻ при температуре плавления, полученные в основном методом молекулярной динамики.

Предельные значения коэффициента диффузии ионов фтора в супериониках CaF₂ и BaF₂ [13, 24, 25] равны $D_F = 10^{-5} - 10^{-4} \text{ см}^2/\text{с}$. Отметим, что эти значения D_F хорошо совпадают с коэффициентами диффузии ионов фтора в расплавах. Вопрос предельной величины коэффициента диффузии в суперионных проводниках подробно рассматривался в [26]. С учетом диффузионных данных [13, 24, 25] рассчитанные по уравнению (8) значения μ_{mob} для кристаллов CaF₂ и BaF₂ приведены в табл. 2. Из данных таблицы следует, что верхняя

КРИСТАЛЛОГРАФИЯ том 69 № 3 2024

граница μ_{mob} в кристаллическом состоянии фторидных суперионных проводников составляет (5 ± 1) × 10⁻³ см²/(сВ).

В табл. 3 приведены экспериментальные данные по проводимости для рассматриваемых фторидных соединений LiF, CaF₂, SrF₂, BaF₂, PbF₂, LaF₃ и хлорида SrCl₂, а также даны кондуктометрические данные [16] для высокотемпературных модификаций α -LuF₃, α -YF₃ (структурный тип α -UO₃ [27]). К сожалению, кристаллические модификации α -LuF₃ и α -YF₃ не закаливаются, поэтому их высокотемпературные структурные исследования не проводили. Можно видеть, что верхняя граница проводимости носителей заряда в кристаллическом состоянии суперионных фторидов составляет 4 ± 1 См/см.

Кристалл	Температура <i>Т</i> , К	Проводимость σ, См/см	Подвижность µ _{<i>mob</i>} , см ² /(сВ)	Концентрация <i>n_{mob}</i> , см ⁻³
$\beta - PbF_2$ $T_{fus} = 1098 \text{ K} [19]$	1098	4 [15]	6.3×10^{-3}	4.0×10^{21}
$\frac{Pb_{0.67}Cd_{0.33}F_2}{T_{fus} = 1018 \text{ K [40]}}$	873	2.5 [36, 37]	$3.1 \times 10^{-3}[38]$	5.1 × 10 ²¹ [38]
$\frac{Pb_{0.9}Sc_{0.1}F_{2.1}}{T_{fus} = 1023 \text{ K [41]}}$	873	1.2 [36, 37]	3.7×10^{-3} [39]	2.0×10^{21} [39]
β -PbSnF ₄ $T_{fus} = 663 \text{ K} [42, 43]$	597	0.2 [36]		

Таблица 4. Проводимость, подвижность и концентрация ионных носителей заряда во флюоритовой модификации β-PbF₂ и твердых растворах на ее основе

*Тетрагональное искажение флюоритовой структуры.

С учетом рассчитанных значений μ_{mob} из уравнения (2) можно оценить концентрацию носителей заряда и сравнить ее с общей концентрацией ионов фтора в кристаллах. Расчеты показывают, что концентрация носителей заряда равна (5 ± 2) × × 10²¹ см⁻³ или 10 ± 4% от общего количества ионов фтора.

Согласно полученным результатам модель "расплавленной подрешетки ионов проводимости" (cooperative liquid-like diffusion, sub-lattice melting) [21]) для фторидных суперионных проводников не справедлива. Основу этой модели составляет положение, что высокая ионная проводимость твердых тел обусловлена переходом подрешетки ионов проводимости в "расплавленное" состояние, при этом другие подрешетки остаются в "жестком" кристаллическом состоянии. В рамках такого подхода концентрация n_{mob} мобильных ионов фтора должна составлять 100% от их содержания во фторидных кристаллах. Благодаря проведенным расчетам выявлено, что во фторидных суперионных кристаллах при плавлении концентрация носителей заряда меньше на порядок величины. Этот вывод хорошо согласуется с термодинамическими расчетами [29–31] концентрации носителей заряда для анионных и катионных проводников, согласно которым относительная концентрация носителей заряда в ионных кристаллах при плавлении составляет 10-20%.

При высоких температурах разупорядочение анионной подрешетки фторидных кристаллов со структурами флюорита и тисонита является причиной появления высокой фтор-ионной проводимости, при этом катионная подрешетка остается упорядоченной и не участвует в ионном транспорте. В [32] высказана гипотеза, что строение анионных подрешеток гетеровалентных твердых растворов $M_{1-x}R_xF_{2+x}$ (M = Ca, Sr, Ba; R – редкоземельные элементы) при комнатных температурах и их флюоритовых матриц MF_2 при высоких температурах близки. Активно проводятся исследования дефектной структуры кристаллов $M_{1-x}R_xF_{2+x}$ (обзоры [4, 33, 34] и ссылки в них). Попытки сохранить до комнатной температуры высокотемпературное разупорядоченное состояние кристаллов MF_2 методами термической обработки (закалкой) были неудачными. Непосредственно высокотемпературные структурные исследования [35, 36] выполнены только для флюоритовой модификации β -PbF₂.

В табл. 4 приведены высокотемпературные данные по проводимости, подвижности и концентрации ионных носителей для флюоритовой модификации β -PbF₂ и твердых растворов Pb_{1-x}Cd_xF₂ и $Pb_{1-x}Sc_xF_{2+x}$ на ее основе. Кристаллы $Pb_{1-x}Cd_xF_2$ и $Pb_{1-x}Sc_xF_{2+x}$ являются одними из лучших фторпроводящих суперионных проводников. Можно видеть, что максимальные значения подвижности и концентрации дефектов в твердых растворах того же порядка, что и во флюоритовой матрице. Полученные данные подтверждают высказанную в [32] гипотезу, что анионную подрешетку твердых растворов $Pb_{1-x}Cd_xF_2$ и $Pb_{1-x}Sc_xF_{2+x}$ можно рассматривать как стабилизированную изоморфными замещениями высокотемпературную разупорядоченную (по анионам) форму матрицы β-PbF₂.

ЗАКЛЮЧЕНИЕ

Рассчитана предельная величина подвижности ионов фтора в ионных кристаллах LiF (структурный тип NaCl), CaF₂, SrF₂, BaF₂, PbF₂ (структурный тип флюорита) и LaF₃ (тип тисонита). Расчеты выполнены в рамках кристаллофизической модели "прыжкового" ионного переноса. Верхняя граница подвижности, концентрации носителей заряда и ионной проводимости в суперионных фторидах составляют (5 ± 1) × 10^{-3} см²/(cB), (5 ± 2) ×

448

 $\times 10^{21}$ см⁻³ и 4 \pm 1 См/см соответственно. Полученные результаты будут способствовать пониманию процессов электропереноса во фторидных материалах с высокой анионной проводимостью.

Работа выполнена в рамках государственного задания НИЦ "Курчатовский институт".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Иванов-Шиц А.К., Мурин И.В.* Ионика твердого тела. Т. 2. СПб.: Изд-во СПбГУ, 2010. 1000 с.
- Preishuber-Pflugl F., Wilkening M. // Dalton Trans. 2016. V. 45. P. 8675. https:/doi.org/10.1039/c6dt00944a
- Duvel A., Bendnarcik J., Sepelak V., Heitjans P. // J. Phys. Chem. C. 2014. V. 118. P. 7117. https://doi.org/10.1021/jp410018t
- Suluanova E.A., Sobolev B.P. // CrystEngComm. 2022. V. 24. P. 3762. https://doi.org/10.1039/d2ce00280a
- Сорокин Н.И., Соболев Б.П. // ФТТ. 2019. Т. 61. № 1. С. 53.
- https:/doi.org/10.21883/FTT.2019.01.46893.181
- Соболев Б.П. // Кристаллография. 2019. Т. 64. № 5. С. 701. https://doi.org/10.1134/S0023476119050199
- Anji Reddy M., Fichtner M. // J. Mater. Chem. 2011.
 V. 21. P. 17059. https://doi.org/10.1039/c1jm13535
- Karkera G., Anji Reddy M., Fichtner M. // J. Power Sources. 2021. V. 481. P. 228877. https:/doi.org/10.1016/j.jpowsour.2020.228877
- Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. P. 2823. https:/doi.org/1016/j.joule.2021.09.016
- Fergus J.W. // Sensors and Actuators. 1997. V. 42. P. 119.
- Sotoudeh M., Baumgart S., Dillenz M. et al. // ChemRxiv. 2023. https://doi.org/10.26434/chemrxiv-2023-26618
- 12. Voronin V.M., Volkov S.V. // J. Phys. Chem. Solids. 2001. V. 62. P. 1349.
- Evangelakis G.A., Pontikis V. // Phys. Rev. B. 1991.
 V. 43. № 4. P. 3180.
- 14. *Derrington C.E., Lindher A., O'Keeffe M.* // J. Solid State Chem. 1975. V. 15. № 2. P. 171.
- 15. *Derrington C.E., O'Keeffe M.* // Nature Phys. Sci. 1973. V. 246. № 19. P. 44.
- 16. O'Keeffe M. // Science. 1973. V. 180. P. 1276.
- 17. Baak T. // J. Chem. Phys.1958. V. 29. P. 1195.
- 18. Ure R.W. // J. Chem. Phys. 1957. V. 26. P. 1363.
- 19. *Sobolev B.P.* The rare earth trifluorides. Pt. 1. The temperature chemistry of the rare earth trifluorides.

КРИСТАЛЛОГРАФИЯ том 69 № 3 2024

Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona. 2000. 520 p.

- 20. Гарашина Л.С., Соболев Б.П., Александров В.Б., Вишняков Ю.С. // Кристаллография. 1980. Т. 25. № 2. С. 294.
- 21. *Иванов-Шиц А.К., Мурин И.В.* Ионика твердого тела. Т. 1. СПб.: Изд-во СПбГУ, 2000. 616 с.
- 22. Mansmann M. // Z. Kristallgr. 1965. B. 122. S. 375.
- Belzner A., Schulz H., Heger G. // Z. Kristallgr. 1994.
 B. 209. S. 239.
- 24. *Jacucci G., Rahman A.* // J. Chem. Phys. 1978. V. 69. № 9. P. 4117.
- Айтьян С.Х., Иванов-Шиц А.К. // ФТТ. 1990. Т. 32. № 5. С. 1360.
- 26. *O'Keeffe M.* // Fast ion transport in solids / Ed. Van Gool W. Amsterdam: North-Holland, 1973. P. 165.
- 27. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
- 28. *Воронин В.М., Волков С.В.* // Электрохимия. 2004. Т. 40. № 1. С. 54.
- 29. Chadwick A.V. // Solid State Ionics. 1983. V. 8. P. 209.
- Bollmann W. // Cryst. Res. Technol. 1992. V. 27. № 5. P. 661.
- 31. Bollmann W., Uvarov N.F., Hairetdinov E.F. // Cryst. Res. Technol. 1989. V. 24. № 4. P. 421.
- 32. *Fedorov P.P., Sobolev B.P.* // J. Less-Common Metals. 1979. V. 63. P. 31.
- Sobolev B.P. The rare earth trifluorides. Pt. 2. Introduction to materials science of multicomponent metal fluoride crystals. Institute of Crystallography, Moscow and Institut d'Estudis Catalans, Barcelona. 2001. 460 p.
- Сорокин Н.И., Голубев А.М., Соболев Б.П. // Кристаллография. 2014. Т. 59. № 2. С. 275.
- Koto K., Schulz H., Huggins R.A. // Solid State Ionics. 1981. V. 3–4. P. 381.
- Shapiro S.M., Reidinger F. // Physics of Superionic Conductors / Ed. Salamon M.B. Berlin: Springer, 1979. P. 45.
- Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. С. 1506.
- 38. Сорокин Н.И. // ФТТ. 2022. Т. 64. № 7. С. 847.
- 39. Сорокин Н.И. // ФТТ. 2015. Т. 57. С. 1325.
- 40. Сорокин Н.И. // ФТТ. 2018. Т. 60. С. 710.
- 41. *Сорокин Н.И., Бучинская И.И., Соболев Б.П. //* Журн. неорган. химии. 1992. Т. 37. № 12. С. 2653.
- 42. Федоров П.И., Трновцова В., Мелешина В.А. и др. // Неорган. материалы. 1994. Т. 30. С. 406.
- 43. *Бучинская И.И., Федоров П.П.* // Успехи химии. 2004. Т. 73. № 4. С. 404.

СОРОКИН

UPPER LIMIT OF MOBILITY AND CONCENTRATION OF CHARGE CARRIERS IN FLUORIDE SUPERIONIC CONDUCTORS WITH FLUORITE AND TYSONITE STRUCTURES

© 2024 N.I. Sorokin^{a,*}

^aShubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC "Kurchatov Institute," 119333 Moscow, Russia

*e-mail: nsorokin1@yandex.ru

Within the framework of a crystal-physical model, the maximum values of mobility and concentration of charge carriers in fluoride superionic conductors belonging to the structural types of fluorite (CaF₂, SrF₂, BaF₂, PbF₂) and tysonite (LaF₃) were calculated. It has been shown that the upper limit of ionic conductivity, mobility and charge carrier concentration in the crystalline state of fluoride superionics is 4 ± 1 S/cm, $(5 \pm 1) \times 10^{-3}$ cm²/(cB) μ (5 ± 2) $\times 10^{21}$ cm⁻³ (10 ± 4% of the total fluoride ions), respectively.