—— ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ ——

УДК 539.25, 537.533.35

ПРОБЛЕМЫ ВЫСОКОДОЗНОЙ ИОННОЙ ИМПЛАНТАЦИИ ИОНОВ ГЕЛИЯ В КРЕМНИЙ

© 2024 г. П. А. Александров¹, О. В. Емельянова², С. Г. Шемардов¹, Д. Н. Хмеленин², А. Л. Васильев^{1,2,*}

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия ² Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники

ниститут кристаллографии им. А.Б. туоникова Курчатовского комплекси кристаллографии и фотоники НИЦ "Курчатовский институт", Москва, Россия

> *E-mail: a.vasiliev56@gmail.com Поступила в редакцию 15.09.2023 г. После доработки 15.09.2023 г. Принята к публикации 10.10.2023 г.

Рассмотрены закономерности изменения морфологии поверхности и развития пористой структуры монокристаллического кремния в зависимости от режимов ионной имплантации и отжига. Определены критические дозы имплантации для образцов до и после постимплантационного отжига, при которых наблюдается эрозия поверхности: имплантация ионами гелия до флюенса ниже 3×10^{17} He⁺/cm² без пост-имплантационного отжига не изменяет морфологию поверхности монокристаллического кремния; отжиг образцов, имплантированных флюенсом 2×10^{17} He⁺/cm² и выше, вызывает флекинг (образование чешуек (отслоение)).

DOI: 10.31857/S0023476124030155, EDN: XOBHKR

ВВЕДЕНИЕ

Создание пористых структур методом имплантации ионами гелия очень привлекательно для технологий современной электроники. Наиболее исследованным в настояший момент является применение пористых структур для решения проблем оптоэлектроники и геттерирования металлических примесей в кремнии [1–3]. В связи с этим большинство работ в данной области посвящено ионной имплантации кремния средними и малыми дозами ионов гелия [1-17]. Отметим, что использование высокодозной имплантации в сочетании с высокотемпературным отжигом позволяет создавать приповерхностные слои с развитой пористостью, открывая новые возможности для производства структур кремния-на-изоляторе (SOI) и кремний-ни-на-чем (SON) [18].

В ходе многочисленных экспериментов по имплантации малых и средних доз [2, 3, 5, 7, 8, 11, 13] гелия были установлены основные закономерности зарождения и эволюции пористости в кремнии в зависимости от дозы и температуры имплантации, длительности и температуры постимплантационного отжига. Известно, что при низких флюенсах имплантации ($\leq 5 \times 10^{15}$) образовавшиеся He_mV_n-кластеры диссоциируют при низких температурах [19], препятствуя образованию

пузырьков. При высоких флюенсах ($\geq 1 \times 10^{16}$ см⁻²) зарождение пузырьков происходит непосредственно во время ионной имплантации [2, 7, 20]. Увеличение флюенса имплантации вызывает не только рост пузырьков, но и увеличение концентрации гелия в решетке, дополнительно увеличивающего напряжения в поверхностном слое. При достижении критического флюенса высокие напряжения в тонком имплантированном слое приводят к поверхностной эрозии по механизмам блистеринга (вспучивания) и флекинга (образования чешуек (отслоения)) [21-24]. Несмотря на большой объем проведенных исследований по ионной имплантации кремния гелием. данные об изменении морфологии поверхности кремния в процессе формирования и эволюции пористости практически отсутствуют. Высокотемпературный отжиг (300-1000°С) имплантированного гелием кремния вызывает снижение объемной плотности и увеличение размера гелиевых пузырьков, которые происходят по механизму миграции/коалесценции [12, 16] или при совместной активации механизмов переконденсации и миграции/коалесценции [17]. В отличие от металлов, при увеличении температуры одновременно с ростом размеров пузырьков в кремнии происходит десорбция атомов гелия как из пузырьков, так и из материала в целом [1, 2, 4, 6, 9, 10, 16]. Десорбция гелия в зависимости от его концентрации в пузырьках может начинаться при относительно низких (~700°С) температурах [1, 6, 9, 10, 16, 25]. В связи с этим наблюдаемые полости, образующиеся в результате имплантации гелием и последующего высокотемпературного отжига, могут содержать различное количество гелия или не содержать его вовсе. Поскольку электронно-микроскопические изображения не позволяют различить, является ли полость газонаполненной (пузырьком) или свободной от газа (порой), будем употреблять термин поры/пузырьки, чтобы описать полости безотносительно количества содержащегося в них газа.

Таким образом, ожидается, что при высокодозной имплантации кремния ионами гелия с последующим постимплантационным отжигом финальная пористая структура будет представлена массивами пузырьков различной морфологии и размера. При этом сохранение целостности поверхности, необходимое для создания структур типа SOI и SON, не очевидно, и будет в большой степени определяться параметрами сформированной пористости и, как следствие, режимами имплантации и отжига. Основной задачей настояшей работы является одновременное исследование закономерностей изменения морфологии поверхности и параметров пористости кремния при высокодозной имплантации ионами гелия и последующего отжига в различных режимах и определение критических параметров имплантации, ниже которых не происходит нарушения поверхности.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Материалы и методика ионной имплантации. Монокристаллические пластины (100)Si были имплантированы в сканирующем режиме ионами He⁺ с энергией 50 кэВ флюенсами (1–3) × 10¹⁷ см⁻² на установке ИЛУ-100 (Россия). Согласно расчетам с использованием программного пакета SRIM-2013 [26] в режиме полных каскадов ($E_d(Si) = 20.5$ эВ [27]) пик повреждений и проективный пробег ионов He⁺ с энергией 50 кэВ лежат на глубине 401 и 460 нм соответственно. Увеличение флюенса от 1 до 3 × 10^{17} см⁻² приводит к увеличению максимальной концентрации гелия от 8.7 до 26.2 ат. % и повреждающей дозы от 7.3 до 21.7 сна (рис. 1, табл. 1).

Сканирование образцов пучком ионов гелия проводили одновременно в горизонтальной и вертикальной плоскостях: в горизонтальной плоскости с помощью электростатического отклонения пучка, в вертикальной – механическим методом. Вследствие относительно медленного механического сканирования пучком поверхности образцов в вертикальной плоскости в процессе имплантации происходил циклический нагрев образцов от 100 до 160°С. Циклическое изменение температуры приводило к циклическому изменению давления газа в пузырьках и, как следствие, к изменению механических свойств кремния из-за малоцикловой усталости материала. Постимплантационный отжиг образцов был выполнен в кварцевой печи в атмосфере азота при температуре 1000°С в течение 1 ч. Для исследования влияния температуры на эрозию поверхности провели дополнительный отжиг образца, имплантированного флюенсом 2×10^{17} см² при температуре 700°С.

Методы исследования. Исследование топографии поверхности монокристаллического кремния после ионной имплантации и отжигов проводили с использованием растрового электронно-ионного микроскопа (РЭМ) Scios (ThermoFisher Scientific, США) в режиме вторичных электронов. Подготовку поперечных срезов для исследований методом просвечивающей и просвечивающей растровой электронной микроскопии (ПЭМ и ПРЭМ соответственно) осуществляли методом lift-out с помощью фокусированного ионного пучка в растровом электронно-ионном микроскопе HeliosNanoLab^{тм} 600i (FEI, США). Во избежание повреждения поверхности перед подготовкой поперечного среза на поверхность образцов был напылен защитный слой Рt толщиной ~1 мкм. Полученные поперечные срезы были ориентированы параллельно плоскостям {110} Si. Исследования поперечных срезов осуществляли методами ПЭМ и ПРЭМ на микроскопе Osiris (Thermo Fisher Scientific, США),

Таблица 1. Расчетные значения максимальной концентрации Не и повреждающей дозы после имплантации образцов Si ионами He⁺ в различных режимах

Флюенс имплантации, см ⁻²	Проективный пробег ионов ${ m He}^+(R_p),$ нм	Максимальная концентрация Не, ат. %	Пик повреждений, нм	Максимальная повреждающая доза, сна
1×10^{17}	460	8.7	400	7.3
2×10^{17}		17.5		14.5
3×10^{17}		26.2		21.7

Рис. 1. Профили распределения внедренного Не и повреждающей дозы по глубине образца Si, имплантированного флюенсом 1×10^{17} см⁻².

оборудованном высокоугловым кольцевым темнопольным детектором (**ВКТД**) (Fischione, США) и рентгеновским энергодисперсионным спектрометром Super X (ChemiSTEM, Bruker, США). Для обработки и анализа изображений использовали программные пакеты Gatan Digital Micrograph (Gatan, США), ImageJ (Plugin Weka trainable segmentation [28]) и ESVision (FEI, США).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Растровая электронная микроскопия. Исследования морфологии поверхности имплантированных образцов показали, что имплантация с одновременным циклическим нагревом ионным пучком до флюенса $< 3 \times 10^{17}$ см⁻² не приводит к поверхностной эрозии. Начиная с флюенса 3×10^{17} см⁻² происходит разрушение поверхности по механизму флекинга (рис. 2а, 2б). Поврежденные области достигают размеров ~5620 мкм². После отжига при 700°С (рис. 2в. 2г) поврежденные участки поверхности наблюдаются после имплантации флюенсом 2×10^{17} He⁺/см². Наибольший размер поврежденных участков составляет ~110 мкм², причем в таких участках обнаруживается открытая пористость с размерами пор/пузырьков от 10 до 160 нм. Значительная часть пор/пузырьков имеет нерегулярную форму, указывая на происходящую в процессе отжига коалесценцию. После отжига при температуре 1000°С (рис. 2д, 2е) также наблюдаются признаки интенсивного флекинга, наибольший размер поврежденных участков составляет ~140 мкм². Размер пор/пузырьков в поврежденных участках в пределах погрешности совпадает с аналогичным для образца, отожженного при 700°С. Имплантация с наименьшим использованным в данной работе флюенсом 1×10^{17} см² и последующий высокотемпературный отжиг при 1000°С не вызывают

эрозию поверхности монокристалического кремния (рис. 2ж, 2з). В табл. 2 представлены результаты количественного расчета площади поврежденных участков поверхности для всех исследованных образцов.

Таким образом, проведенные исследования методом РЭМ показали, что при высокодозной имплантации кремния ионами гелия в исследованных режимах основное влияние на эрозию поверхности кремния оказывает флюенс имплантации, а не температура постимплантационного отжига. С точки зрения сохранения целостности поверхностного слоя кремния критический флюенс, при превышении которого наблюдается поверхностная эрозия кремния, — ниже 3×10^{17} He⁺/см² и 2×10^{17} He⁺/см² для образцов без и после постимплантационного отжига соответственно.

Таблица 2. Расчетные значения площади участков, подвергнутых флекингу после имплантации образцов Si ионами He⁺ в различных режимах

Флюенс имплантации + температура отжига	Площадь участков, подвергнутых флекингу, %	
3 × 10 ¹⁷ см ⁻² без отжига	81.1	
$2 \times 10^{17} \mathrm{cm}^{-2} + 700^{\circ}\mathrm{C}$	29.4	
$2 \times 10^{17} \text{cm}^{-2} + 1000^{\circ} \text{C}$	36.7	
$1 \times 10^{17} \text{ cm}^{-2} + 1000^{\circ}\text{C}$	0	

Просвечивающая электронная микроскопия. На рис. 3 показаны ПЭМ- и ПРЭМ ВКТД-изображения образцов, имплантированных флюенсами 3×10^{17} см⁻² (рис. 3а, 3б) без отжига, 2×10^{17} см⁻² (рис. 3в, 3г) и 1×10^{17} см⁻² (рис. 3д, 3е) после отжига при 1000°С.

Анализ полученных ПЭМ/ПРЭМ-изображений показал наличие развитой пористой структуры для всех исследованных образцов. Поры/пузырьки неравномерно распределены по глубине имплантированного слоя и имеют различную форму. Наибольший размер пор/пузырьков зафиксирован на расстоянии, соответствующем проективному пробегу ионов гелия, а именно на глубинах от исходной поверхности 466, 450 и 430 нм для образцов, имплантированных в режимах 3 × 10¹⁷ см⁻² без отжига, 2×10^{17} см⁻² и 1×10^{17} см⁻² после отжига при 1000°С соответственно. В области проективного пробега ионов гелия для образцов, имплантированных в режимах 3×10^{17} см⁻² без отжига и 2×10^{17} см⁻² после отжига при 1000°С,

Рис. 2. РЭМ-изображение монокристаллических пластин Si после имплантации и отжига в различных режимах: а, 6 – имплантация флюенсом 3×10^{17} см⁻² без отжига, в, г – имплантация флюенсом 2×10^{17} см⁻² после отжига при 700°С, д, е – имплантация флюенсом 2×10^{17} см⁻² после отжига при 1000°С, ж, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С, к, з – имплантация флюенсом

Рис. 3. Светлопольные ПЭМ/ВКТД ПРЭМ-изображения монокристаллических пластин Si после имплантации и отжига в различных режимах: а, б – имплантация флюенсом 3×10^{17} см⁻² без отжига, в, г – имплантация флюенсом 2×10^{17} см⁻² после отжига при 1000°С, д, е – имплантация флюенсом 1×10^{17} см⁻² после отжига при 1000°С; а, в, д – светлопольные ПЭМ-изображения, б, г, е – ВКТД ПРЭМ-изображение.

Рис. 4. Гистограммы распределения для образцов после отжига при 1000°С, имплантированных флюенсами 1×10^{17} см⁻²: и 2×10^{17} см⁻²: а – диаметра пор/пузырьков в полном имплантированном слое, б – среднего диаметра пор/пузырьков в зависимости от глубины их залегания

наблюдаются параллельные поверхности образца цепочки пор/пузырьков с узкими перемычками размером <5 нм или без них (рис. 2в, 2г). Размер пор/пузырьков в цепочках достигает ~60 и 155 нм для образцов, имплантированных в режимах 3×10^{17} см⁻² без отжига и 2×10^{17} см⁻² после отжига 1000°С соответственно. В области проективного пробега цепочек пор/пузырьков не обнаружено для образца, имплантированного в режиме 1×10^{17} см⁻² после отжига при 1000°С; на данной глубине присутствуют только крупные поры/пузырьки с четкой огранкой и размерами до 82 нм. До и после проективного пробега ионов гелия для всех исследованных образцов наблюдается относительно мелкая пористость размерами ~2-20 нм. Гистограмма распределения пор/пузырьков по размерам в образцах после высокотемпературного отжига, имплантированных флюенсами 1×10^{17} см⁻² и 2×10^{17} см⁻², представлена на рис. 4а.

Максимум распределения соответствует среднему диаметру пор/пузырьков 25.4 и 30.4 нм для образцов, имплантированных флюенсами 1×10^{17} и 2×10^{17} см⁻² соответственно. Вследствие неравномерного распределения пор/пузырьков по размерам вдоль пробега ионов гелия для корректного определения среднего размера была построена дополнительная зависимость среднего размера пор/ пузырьков от глубины их залегания. Имплантированный в описанных выше режимах слой кремния был разделен на три подслоя глубиной 250 нм каждый. На рис. 4б показана гистограмма зависимости среднего размера пор/пузырьков от глубины их залегания. Согласно данной гистограмме увеличение флюенса с 1×10^{17} до 2×10^{17} см⁻² приводит к увеличению среднего размера пор/пузырьков с 34.9 до

49.6 и с 11.2 до 15.0 нм в диапазоне глубин 250-500 и 500-750 нм соответственно.

Форма пор/пузырьков изменяется в зависимости от их размера (рис. 5). Для пор/пузырьков размером ≤15-20 нм она близка к сферической (рис. 5а, 5б). У пор/пузырьков большего размера огранка ярко выражена (рис. 5в): большие грани параллельны плоскостям {111}, а малые грани не являются плоскими, но близки к параллельности плоскостям {100}. В области проективного пробега ионов гелия цепочки пор/пузырьков располагаются параллельно поверхности. Форма пор/пузырьков, составляющих данные цепочки, нерегулярная эллиптическая; большая ось эллипса параллельна исходной поверхности образца (рис. 5г).

Как видно на рис. 5, в области, прилегающей к порам/пузырькам большого размера, отмечается образование аморфных зон (области со светло-серым контрастом). Для установления природы аморфных зон проведен энергодисперсионный рентгеновский микроанализ (ЭРМ). Распределение элементов в области, содержащей аморфные зоны для образца, имплантированного флюенсом 2×10^{17} после отжига при 1000°С, выявленное методом ЭРМ, приведено на рис. 6. Анализ результатов ЭРМ показал, что в аморфных зонах (рис. 6б) отмечается заметное снижение содержания кремния; увеличения содержания кислорода и присутствия примесей не установлено.

ПЭМ-изображения высокого разрешения (**ВРПЭМ**) образца, имплантированного флюенсом 2×10^{17} см⁻² и отожженного при 1000°С, представлены на рис. 7: а, б – граница крупной поры/ пузырька, окруженной аморфным материалом до и после ЭРМ-картирования в течение 10 мин соответственно.

Рис. 5. ПЭМ-изображения высокого разрешения монокристаллических пластин Si после имплантации флюенсом 2 × 10¹⁷ см⁻² и отжига при 1000°С: а, б – поры/пузырьки размером ≤15–20 нм, в – поры/пузырьки вблизи проективного пробега ионов с выраженной огранкой, г – поры/пузырьки, составляющие цепочки.

Как видно из представленных изображений, в процессе съемки воздействие электронного пучка с энергией 200 кэВ приводит к кристаллизация аморфных зон. Аналогичный эффект наблюдался в работе [29], в которой показано, что изолированные аморфные зоны, созданные облучением ионами Xe⁺ с энергией 50 кэВ, кристаллизовались под действием электронного пучка с энергиями от 50 до 300 кэВ. Отметим, что эффект нагрева образцов электронным пучком в процессах кристаллизации был исключен; в этой работе предполагалось, что повышение температуры кремния в процессе облучения электронным пучком составляет 0.3°С при энергии электронов 200 кэВ.

Уменьшение содержания кремния в отсутствие повышения содержания кислорода по данным ЭРМ и наличие эффекта кристаллизации под действием электронного пучка по данным ВРПЭМ в приповерхностных областях больших пор/пузырьков позволяют однозначно заключить, что аморфные области образуются в процессе пробоподготовки.

Наряду с развитой системой пор/пузырьков на всех исследованных образцах наблюдаются единичные, типичные для имплантированного кремния дефекты [13, 30, 31], а именно стержнеобразные дефекты {113} (рис. 8а) и дефекты упаковки с плоскостями габитуса {111} (рис. 8б). Такие дефекты обнаружены по всей глубине имплантированного слоя; их низкая плотность, по-видимому, обусловлена высокой температурой и длительностью постимплантационного отжига.

Проведенные исследования методом ПЭМ позволяют установить, что в использованных условиях имплантации и отжига происходит формирование развитой неоднородной по глубине 0—700 нм пористости. В приповерхностной области располагается слой с относительно мелкой пористостью, наибольший размер пор/пузырьков наблюдается

Рис. 6. ПРЭМ-изображение образцов, полученное с использованием ВКТД (а), ЭРМ-распределение элементов вдоль линии 1 (б) и карты распределения элементов ЭРМ: Si (в) и O (г).

Рис. 7. ПЭМ-изображения высокого разрешения образцов после имплантации флюенсом 2×10^{17} см⁻² и отжига при 1000°С: а – до воздействия электронного пучка, б – после воздействия электронного пучка с энергией 200 кэВ в сканирующем режиме в течение 10 мин.

Рис. 8. ПЭМ-изображения высокого разрешения образцов после имплантации флюенсом 2×10^{17} см⁻² и отжига при 1000°С: а – стержневые дефекты в плоскостях {113}, б – дефекты упаковки в плоскостях {111}.

на глубине проективного пробега ионов гелия. На глубинах, больших, чем проективный пробег, размер пор/пузырьков в пределах погрешности совпалает с размером пор/пузырьков в приповерхностном слое. Форма пор/пузырьков определяется их размером; поры большого размера имеют характерную огранку, соответствующую форме усеченного октаэдра. Такая форма является типичной и равновесной для кремния [3, 31]. Обнаруженные в настоящей работе аморфные зоны, окружающие поры/пузырьки большого размера, представляют собой артефакт пробоподготовки. Установлено, что увеличение флюенса с 1×10^{17} до 2×10^{17} см⁻² приводит к наиболее интенсивному (~41%) росту среднего размера пор/пузырьков на глубине проективного пробега. Для образцов, имплантированных флюенсами 3×10^{17} см⁻² без отжига и 2×10^{17} см⁻² после отжига, на глубине проективного пробега вследствие интенсивного роста и коалесценции происходит образование цепочек пор/ пузырьков, параллельных поверхности. Размер пор/пузырьков в цепочках по данным ПЭМ совпадает с размером открытой пористости на поврежденных участках по данным РЭМ. Следовательно, образование цепочек пор/пузырьков, является причиной наблюдаемого интенсивного флекинга.

ЗАКЛЮЧЕНИЕ

Высокодозная имплантация монокристаллического кремния ионами гелия с последующим высокотемпературным отжигом при 1000°С приводит к образованию развитой пористой структуры образцов в использованном диапазоне флюенсов

 $1-2 \times 10^{17}$ см⁻². Начиная с флюенса 2×10^{17} см⁻² происходит формирование цепочек пор. расположенных параллельно поверхности, с наибольшим размером пор ~155 нм. Морфология поверхности кремния, имплантированного в режиме 1×10^{17} см⁻² после отжига при 1000°С, не изменяется, увеличение флюенса до 2×10^{17} см⁻² приводит к интенсивной поверхностной эрозии кремния по механизму флекинга. Несмотря на то что не удалось получить неразрушенного поверхностного слоя кремния, имплантированного большой дозой гелия, определены критические дозы имплантации для образцов без и с постимплантационным отжигом, при превышении которых наблюдаются нарушения поверхностного слоя. Для предотвращения этого явления необходимы дальнейшие методы оптимизации параметров имплантации и отжига, такие как метод последовательных имплантаций докритических лоз ионов гелия и отжигов.

Работа выполнена в рамках Государственного задания НИЦ "Курчатовский институт".

СПИСОК ЛИТЕРАТУРЫ

 Follstaedt D.M., Myers S.M., Petersen G.A., Medernach J.W. // J. Electron Mater. 1996. V. 25. № 1. P. 157. https://doi.org/10.1007/BF02666190

 Raineri V., Fallica P.G., Percolla G. et al. // J. Appl. Phys. 1995. V. 78. № 6. P. 3727. https://doi.org/10.1063/1.359953

3. *Raineri V., Saggio M., Rimini E.* // J. Mater. Res. 2000. V. 15. № 7. P. 1449. https://doi.org/10.1557/JMR.2000.0211

- Griffioen C.C., Evans J.H., De Jong P.C., Van Veen A. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 27. № 3. P. 417. https://doi.org/10.1016/0168-583X(87)90522-2
- Evans J.H., Van Veen A., Griffioen C.C. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 28. № 3. P. 360. https://doi.org/10.1016/0168-583X(87)90176-5
- Corni F., Nobili C., Ottaviani G. et al. // Phys. Rev. B. 1997. V. 56. № 12. P. 7331. https://doi.org/10.1103/PhysRevB.56.7331
- Fichtner P.F.P., Kaschny J.R., Yankov R.A. et al. // Appl. Phys. Lett. 1997. V. 70. № 6. P. 732. https://doi.org/10.1063/1.118251
- Fichtner P.F.P., Kaschny J.R., Behar M. et al. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 148. № 1. P. 329. https://doi.org/10.1016/S0168-583X(98)00714-9
- Corni F., Calzolari G., Frabboni S. et al. // J. Appl. Phys. 1999. V. 85. № 3. P. 1401. https://doi.org/10.1063/1.369335
- Cerofolini G.F., Calzolari G., Corni F. et al. // Phys. Rev. B. 2000. V. 61. № 15. P. 10183. https://doi.org/10.1103/PhysRevB.61.10183
- Da Silva D.L., Fichtner P.F.P., Peeva A. et al. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 175–177. P. 335. https://doi.org/10.1016/S0168-583X(00)00567-X
- Evans J.H. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 196. № 1. P. 125. https://doi.org/10.1016/S0168-583X(02)01290-9
- 13. *David M.L., Beaufort M.F., Barbot J.F.* // J. Appl. Phys. 2003. V. 93. № 3. P. 1438. https://doi.org/10.1063/1.1531814
- 14. *Pizzagalli L., David M.L., Bertolus M.* // Model. Simul. Mat. Sci. Eng. 2013. V. 21. № 6. P. 065002. https://doi.org/10.1088/0965-0393/21/6/065002
- Liu L., Xu X., Li R. et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 456. P. 53. https://doi.org/10.1016/j.nimb.2019.06.034
- Ono K., Miyamoto M., Kurata H. et al. // J. Appl. Phys. 2019. V. 126. № 13. P. 135104. https://doi.org/10.1063/1.5118684
- Pizzagalli L., Dérès J., David M.-L., Jourdan T. // J. Phys. D. Appl. Phys. 2019. V. 52. № 45. P. 455106. https://doi.org/10.1088/1361-6463/ab3816

- Ogura A. // Appl. Phys. Lett. 2003. V. 82. № 25. P. 4480. https://doi.org/10.1063/1.1586783
- Van Veen A., Schut H., Hakvoort R.A. et al. // MRS Online Proceedings Library. 1994. V. 373. № 1. P. 499. https://doi.org/10.1557/PROC-373-499
- Myers S.M., Bishop D.M., Follstaedt D.M. et al. // MRS Online Proceedings Library. 1992. V. 283. № 1. P. 549. https://doi.org/10.1557/PROC-283-549
- 21. *Was G.S.* Fundamentals of Radiation Materials Science. New York: Springer, 2017. https://doi.org/10.1007/978-1-4939-3438-6
- 22. *Kótai E., Pászti F., Manuaba A. et al.* // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 19–20. P. 312. https://doi.org/10.1016/S0168-583X(87)80063-0
- Qian C., Terreault B. // J. Appl. Phys. 2001. V. 90. № 10. P. 5152. https://doi.org/10.1063/1.1413234
- 24. *Li B., Zhang C., Zhou L. et al.* // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 24. P. 5112. https://doi.org/10.1016/j.nimb.2008.09.016
- 25. *Alix K., David M.-L., Dérès J. et al.* // Phys. Rev. B. 2018. V. 97. № 10. P. 104102. https://doi.org/10.1103/PhysRevB.97.104102
- Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
- Griffin P.J. // 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2016. P. 1. https://doi.org/10.1109/RADECS.2016.8093101
- 28. Arganda-Carreras I., Kaynig V., Ruedenet C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
- Jenc ic I., Bench M.W., Robertson I.M., Kirk M.A. // J. Appl. Phys. 1995. V. 78. № 2. P. 974. https://doi.org/10.1063/1.360764
- Han W.T., Liu H.P., Li B. // Appl. Surf. Sci. 2018.
 V. 455. P. 433. https://doi.org/10.1016/j.apsusc.2018.05.228
- Yang Z., Zou Z., Zhang Z. et al. // Materials. 2021. V. 14. № 17. P. 5107. https://doi.org/10.3390/ma14175107

INSIGHTS INTO HIGH-DOSE HELIUM IMPLANTATION OF SILICON

© 2024 P. A. Aleksandrov^a, O. V. Emelyanova^b, S.G. Shemardov^a, D. N. Khmelenin^b, A.L. Vasiliev^{a,b,*}

^aNational Research Center "Kurchatov Institute", Moscow, Russia

^bShubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of National Research Center "Kurchatov Institute", Moscow, Russia

*e-mail: a.vasiliev56@gmail.com

The paper reports an analysis of surface morphology variation and cavity band formation in silicon single crystal induced by ion implantation and post-implantation annealing in different regimes. Critical implantation doses required to promote surface erosion are determined for samples subjected to post-implantation annealing and in absence of post-implantation treatment. For instance, implantation with helium ions to fluences below $3 \times 10^{17} \text{ He}^+/\text{cm}^2$ without post-implantation annealing does not affect the surface morphology; while annealing of samples implanted with fluences of $2 \times 10^{17} \text{ He}^+/\text{cm}^2$ and higher promotes flaking.