——— КРИСТАЛЛОХИМИЯ —

УДК 548.4; 004.94

ЭНЕРГИИ РАСТВОРЕНИЯ ПРИМЕСЕЙ И ИХ КЛАСТЕРОВ В ПОВЕЛЛИТЕ CaMoO₄

© 2023 г. В. Б. Дудникова^{1,*}, Н. Н. Еремин¹

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия *E-mail: VDudnikova@hotmail.com
Поступила в редакцию 16.09.2022 г.
После доработки 27.09.2022 г.
Принята к публикации 03.10.2022 г.

Методом межатомных потенциалов проведено моделирование примесных дефектов в повеллите ${\rm CaMoO_4}$. Рассчитаны энергии растворения одно-, двух- и трехвалентных примесей, представлен их сравнительный анализ и основные закономерности изменения. Определены позиции наиболее вероятной локализации дефектов. Для гетеровалентных примесей найден наиболее энергетически выгодный механизм компенсации их заряда как за счет собственных дефектов кристалла, так и по схеме сопряженного изоморфизма. Показано, что образование кластеров примеси с собственными дефектами кристалла и в большей степени образование кластеров примесей с разными зарядами позволяет существенно снизить их энергию растворения. Образование нейтральных кластеров одновалентных примесей с вакансиями кислорода не только увеличивает растворимость примесей, но и снижает вероятность образования центров окраски.

DOI: 10.31857/S002347612301006X, EDN: DNRRBM

ВВЕДЕНИЕ

Молибдат кальция, $CaMoO_4$ (повеллит), имеет структуру шеелита (тетрагональная сингония, пр. гр. $I4_1/a$). Атомы кальция окружены восемью атомами кислорода с двумя наборами межатомных расстояний (KY = 4 + 4). Атомы молибдена находятся в окружении атомов кислорода, объединенных в тетраэдры. Каждый катион кальция окружен четырьмя такими же катионами и восемью катионами молибдена (рис. 1).

Повеллит и твердые растворы на его основе представляют интерес как в фундаментальном, так и в технологическом отношении в связи с возможностью их использования в качестве люминофоров [1, 2], лазерных материалов [3, 4], криогенных детекторов [5, 6] и целого ряда других практических применений. Возможность образования твердых растворов повеллита с радиоактивными элементами играет важную роль при захоронении ядерных отходов [7, 8].

Легирование редкоземельными и переходными элементами позволяет придать матричным кристаллам люминесцентные, лазерные и другие весьма важные свойства. Гетеровалентные примесные дефекты могут также оказывать влияние на собственные дефекты кристалла и определяемые ими свойства. Как правило, уровень легирования невысок и экспериментальное исследование механизмов растворения затруднительно.

В этом отношении весьма актуально использование атомистического моделирования. Оно позволяет провести сравнение растворимости разных элементов, установить наиболее вероятную их локализацию и компенсацию заряда и облегчает решение задачи получения кристаллов с заданными свойствами.

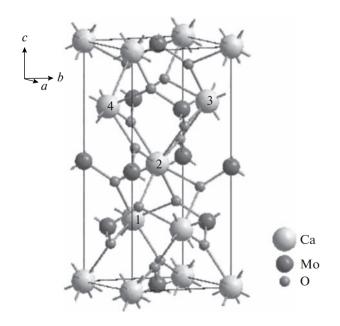


Рис. 1. Структура повеллита.

Моделирование примесных дефектов было проведено в изоструктурном молибдату кальция соединении $PbWO_4$ в [9, 10]. Настоящая работа является продолжением начатого ранее исследования по моделированию собственных дефектов в $CaMoO_4$ [11] и посвящена моделированию примесных дефектов в этих кристаллах.

МЕТОДИКА МОДЕЛИРОВАНИЯ

Моделирование проведено методом межатомных потенциалов с помощью программы GULP 4.0.1 (General Utility Lattice Program) [12], в основе которой лежит процедура минимизации энергии кристаллической структуры.

Атомистический подход основан на использовании эмпирически определенных межатомных потенциалов, описывающих взаимодействие между атомами или ионами в кристалле. Парный потенциал U_{ij} взаимодействия ионов i и j с зарядами q_i и q_j является алгебраической суммой нескольких составляющих:

$$U_{ii}(R_{ii}) = q_i q_i e^2 / R_{ii} + A_{ii} \exp(-R_{ii} / \rho_{ii}) - C_{ii} / R_{ii}^6.$$
 (1)

Первый член учитывает кулоновское взаимодействие, второй — отталкивание, возникающее при перекрывании электронных оболочек соседних атомов, а последний учитывает ван-дер-ваальсово взаимодействие, R_{ij} — межатомное расстояние, A_{ij} , ρ_{ij} , C_{ij} — эмпирические параметры короткодействующих потенциалов, область действия которых в настоящей работе составляла 15 Å для связи кислород—кислород и 10 Å в остальных случаях. Для учета ковалентности связи была введена поляризуемость катионов. Поляризуемость ионов учитывали с помощью "оболочечной модели", в которой остов (C) с зарядом q_c и оболочка (S) с зарядом q_s связаны гармонической упругой константой χ_i :

$$U_i^s = (1/2)\chi_i l_i^2, (2)$$

где l_i — расстояние между центрами остова и смещенной оболочки.

Расчет энергии дефектов проводили по методу Мотта—Литтлтона [13], в основе которого лежит модель "вложенных сфер". Центральная область в расчетах имела радиус 10 Å, следующая за ней сфера имела радиус 22 Å, что позволило обеспечить хорошую сходимость результатов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Процесс растворения примесей может быть записан в виде квазихимических реакций обмена между основным компонентом и примесным компонентом в виде оксида. При гетеровалентном замещении кальция одновалентным ионом Me⁺ образуется примесный дефект с избыточным

отрицательным зарядом, который необходимо скомпенсировать. Возможны различные механизмы компенсации заряда такого дефекта. Избыточный отрицательный заряд, вносимый одновалентной примесью, может быть скомпенсирован за счет собственных дефектов повеллита (вакансий в позициях кислорода $v_0^{\bullet\bullet}$ или интерстициальных внедрений кальция $Ca_1^{\bullet\bullet}$) следующим образом:

$$\frac{1}{2}\mathrm{Me_2O} + \mathrm{Ca_{Ca}^{\times}} + \frac{1}{2}\mathrm{O_O^{\times}} \Leftrightarrow \mathrm{Me_{Ca}^{\prime}} + \frac{1}{2}v_{O}^{\bullet \bullet} + \mathrm{CaO}, \quad (3)$$

$$\frac{1}{2}\mathrm{Me_2O} + \mathrm{Ca}_{\mathrm{Ca}}^{\times} \iff \mathrm{Me}_{\mathrm{Ca}}^{\prime} + \frac{1}{2}\mathrm{Ca}_{\mathrm{I}}^{\bullet \bullet} + \frac{1}{2}\mathrm{CaO}. \tag{4}$$

Для дефектов используются обозначения Крегера и Винка: нижний индекс обозначает позицию в кристалле, верхний — заряд, избыточный положительный (\bullet), избыточный отрицательный (') по отношению к заряду ненарушенной матрицы (\times), v — вакансия, I — интерстиция.

Энергии растворения одновалентных примесей $E_S(Me^+)$ для реакций (3), (4) могут быть оценены соответственно из следующих уравнений:

$$E_{S}(Me^{+}) = E_{d}(Me'_{Ca}) + \frac{1}{2}E_{d}(v_{O}^{\bullet \bullet}) + + E_{L}(CaO) - \frac{1}{2}E_{L}(Me_{2}O),$$
 (5)

$$E_{S}(Me^{+}) = E_{d}(Me'_{Ca}) + \frac{1}{2}E_{d}(Ca_{I}^{\bullet \bullet}) + \frac{1}{2}E_{L}(CaO) - \frac{1}{2}E_{L}(Me_{2}O),$$
(6)

где E_d — энергии примесных и собственных дефектов в повеллите, E_L — структурные энергии чистых оксидов.

Возможно также интерстициальное вхождение одновалентных ионов, вносящих избыточный положительный заряд, при компенсации заряда вакансией кальция $V_{Ca}^{"}$:

$$\frac{1}{2}\mathrm{Me_2O} + \frac{1}{2}\mathrm{Ca}_{\mathrm{Ca}}^{\times} \Leftrightarrow \mathrm{Me_I^{\bullet}} + \frac{1}{2}v_{\mathrm{Ca}}^{"} + \frac{1}{2}\mathrm{CaO}. \tag{7}$$

$$E_{S}(Me^{+}) = E_{d}(Me_{1}^{\bullet}) + \frac{1}{2}E_{d}(v_{Ca}^{"}) + \frac{1}{2}E_{L}(CaO) - \frac{1}{2}E_{L}(Me_{2}O).$$
(8)

Одновалентные примеси могут также растворяться по механизму самокомпенсации заряда, внося в кристалл избыточный отрицательный заряд, замещая кальций, и одновременно входить интерстициально, внося избыточный положительный заряд:

$$Me_2O + Ca_{Ca}^{\times} \Leftrightarrow Me_{Ca}' + Me_{I}' + CaO,$$
 (9)

Взаимо-	Пара	метры потенц	иалов	Атом	Zongu a	Дефект	E_d , \ni B
	А, эВ	ρ, Å	С, эВ Å ⁶	AIOM	Заряд, е	дефект	L_d , \mathfrak{I}
Ca-O _S	2157.414944	0.311170	0.000000	Ca	2.000000	v'' _{Ca}	23.96
Mo_S-O_S	1073.797588	0.368729	0.000000	Mo_C	0.268423	Ca _I ••	-12.62
O_S-O_S	1868.561623	0.120368	10.909249	Mo_S	5.731577		
_		χ (\ni B/Å ⁻²)		O_{C}	0.306187	v_{O}^{ullet}	22.15
Mo_S-Mo_C		74.480726		O_{S}	-2.306187		
O_S-O_C		13.804354					

Таблица 1. Используемые в работе значения параметров межатомных потенциалов и зарядов атомов в кристалле повеллита, энергии собственных дефектов

$$E_S(Me^+) = E_d(Me'_{Ca}) + E_d(Me'_{I}) + + E_I(CaO) - E_I(Me_{I}O).$$
(10)

Для моделирования кристаллической структуры повеллита использовали структурные данные из [14] и параметры межатомных взаимодействий, определенные в [11]. Они представлены в табл. 1 вместе со значениями энергии собственных дефектов, необходимых для компенсации избыточных зарядов, вносимых примесью. Структурная энергия CaO получена при использовании параметров межатомного взаимодействия из табл. 1 и составляла $E_I(\text{CaO}) = -36.19 \text{ эВ}$.

В табл. 2 приведены результаты расчета энергии примесных дефектов E_d и энергии растворения примесей E_S при разных механизмах растворения и компенсации электронейтральности. Значения E_S наиболее энергетически выгодных механизмов растворения выделены жирным шрифтом. Для примесей использовали параметры взаимодействия из [15]. Также приведены значения структурной энергии оксидов $E_L(\text{Me}_i\text{O}_y)$, полученные с использованием этих параметров. Значения ионных радиусов r приведены согласно [16].

При изоморфном замещении кальция одновалентными примесями и компенсации электронейтральности собственными дефектами кристалла более выгодна компенсация заряда вакансиями кислорода (3), (5) по сравнению с компенсацией интерстициальными ионами кальция (4), (6). Для крупного иона калия это наиболее выгодный механизм растворения. Однако для лития он требует значительных энергетических затрат.

Для одновалентных примесей, как и для ионов кальция [11], наиболее энергетически выгодными являются интерстициальные позиции с координатами 0.5, 0.5, 0.375. Энергии интерстициальных одновалентных ионов в табл. 2 приведены в скобках. Для лития интерстициальное вхождение в кристалл при компенсации заряда вакансиями

кальция (7), (8) выгоднее изоморфного замещения. Вместе с тем литий и натрий легче всего растворяются по механизму самокомпенсации заряда (9), (10). На рис. 2 показаны энергии растворения одновалентных примесей для наиболее энергетически выгодных механизмов их растворения.

Изовалентные замещения иона кальция двухвалентной примесью Me²⁺ можно записать в форме следующей квазихимической реакции:

$$Ca_{Ca}^{\times} + MeO \Leftrightarrow Me_{Ca}^{\times} + CaO.$$
 (11)

Энергия растворения примесей для реакции (11) может быть рассчитана по уравнению

$$E_s(\text{Me}^{2+}) = E_d(\text{Me}_{Ca}^{\times}) + E_I(\text{CaO}) - E_I(\text{MeO}).$$
 (12)

Полученные значения приведены в табл. 2. В интерстициальные позиции двухвалентные ионы не встраиваются. Так, растворение магния и стронция по интерстициальному механизму с компенсацией избыточного заряда вакансиями кальция требует затрат в 7.45 и 10.75 эВ соответственно.

Наибольший практический интерес представляет растворимость трехвалентных, в частности, редкоземельных элементов. Для трехвалентных примесей компенсация избыточного положительного заряда может проходить за счет вакансий кальция:

$$\frac{1}{2}Me_{2}O_{3} + \frac{3}{2}Ca_{Ca}^{\times} \iff Me_{Ca}^{\bullet} + \frac{1}{2}v_{Ca}'' + \frac{3}{2}CaO.$$
 (13)

Энергия их растворения может быть оценена следующим образом:

$$E_{S}(Me^{3+}) = E_{d}(Me^{\bullet}_{Ca}) + \frac{1}{2}E_{d}(v^{"}_{Ca}) + \frac{3}{2}E_{L}(CaO) - \frac{1}{2}E_{L}(Me_{2}O_{3}).$$
(14)

Сравнение зависимостей энергий растворения одновалентных, двухвалентных и трехвалентных примесей от разницы ионных радиусов кальция и замещающих его примесных ионов (рис. 2) сви-

Таблица 2. Параметры потенциалов взаимодействия для примесных ионов, структурные энергии оксидов $E_L(\mathrm{Me}_i\mathrm{O}_y)$ и результаты расчета энергии примесных дефектов (E_d) и энергии растворения примесей (E_S) в повеллите для изолированных дефектов

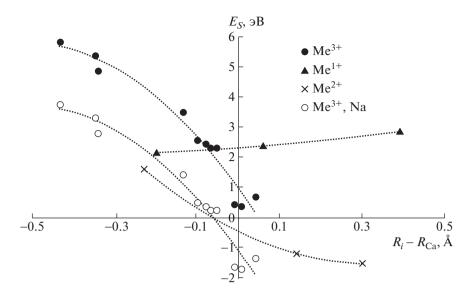
Me	r, Å	А, эВ	ρ, Å	q_c , эВ	q_s , эВ	χ, эΒ/Å ⁻²	E_d , \ni B	E_L , \ni B (Me _i O _y)	E_S , эВ				
Одновалентные примеси								Уравнения					
	Одновалентные примеси						(5)	(6)	(8)	(10)			
Li	0.92	426.480	0.3000	1			14.14 (-6.28)	-30.51	4.28 4.99 2.86 2			2.18	
Na	1.18	1271.504	0.3000	1			14.85 (-2.54)	-26.29	2.88	3.59	4.49	2.41	
K	1.51	3587.570	0.3000	1			16.42 (1.30)	-23.18	2.89	3.60	6.77	4.71	
	Двухвалентные примеси								Уравнение (12)				
Mg	0.89	2457.243	0.2610	1.580	0.420	349.95	-3.18	-40.99	1.62				
Sr	1.26	1956.702	0.3252	0.169	1.831	21.53	1.01	-34.01	-1.17				
Ba	1.42	4818.416	0.3067	0.169	1.831	34.05	2.62	-32.46	-1.51				
									Уравнения				
										(14) (16)			
	Трехвалентные примеси								Компенсатор				
									$\frac{1}{2}v_{\text{Ca}}^{"}$	Li' _{Ca}	Na' _{Ca}	K' _{Ca}	
Al	0.686	2409.505	0.2649	0.043	2.957	403.98	-30.63	-157.60	5.86	5.18	3.79	3.80	
Ga	0.772	2339.776	0.2742	3.000			-29.07	-153.58	5.41	4.73	3.33	3.34	
Fe	0.780	3219.335	0.2641	1.971	1.029	179.58	-28.96	-152.34	4.91	4.23	2.83	2.84	
Yb	0.985	991.029	0.3515	-0.278	3.278	308.91	-22.89	-137.43	3.52	2.84	1.44	1.45	
Y	1.019	1519.279	0.3291	3.000			-23.31	-136.39	2.58	1.90	0.51	0.52	
Tb	1.040	845.137	0.3750	-0.972	3.972	299.98	-20.64	-130.82	2.46	1.78	0.39	0.40	
Gd	1.053	866.339	0.3770	-0.973	3.973	299.96	-20.13	-129.56	2.34	1.66	0.27	0.28	
Eu	1.066	847.868	0.3791	-0.991	3.991	304.92	-19.99	-129.28	2.34	1.66	0.26	0.27	
Nd	1.109	13084.217	0.2550	1.678	1.322	302.35	-23.76	-133.02	0.451	-0.23	-1.63	-1.62	
Pr	1.126	13431.118	0.2557	1.678	1.322	302.36	-23.47	-132.33	0.390	-0.29	-1.69	-1.68	
La	1.160	5436.827	0.2939	5.149	-2.149	173.90	-21.06	-128.15	0.717	0.04	-1.36	-1.35	

Примечание. Для Al^{3+} , Ga^{3+} ионные радиусы (r) для KЧ 8 получены экстраполяцией зависимости r от KЧ.

детельствует о том, что изовалентное замещение требует меньших энергетических затрат, чем гетеровалентное.

Компенсация заряда может происходить также при сопряженном изоморфизме трехвалентного и одновалентного ионов¹ в позиции кальция:

$$\frac{1}{2}Me_2O_3 + \frac{1}{2}M_2O + 2Ca_{Ca}^{\times} \Leftrightarrow$$


$$\Leftrightarrow M'_{Ca} + Me_{Ca}^{\bullet} + 2CaO.$$
(15)

Энергии растворения для реакции (15) могут быть оценены из уравнения

$$E_{S}(Me^{3+}, M^{+}) = E_{d}(Me_{Ca}^{\bullet}) + E_{d}(M'_{Ca}) + + 2E_{L}(CaO) - \frac{1}{2}E_{L}(Me_{2}O_{3}) - \frac{1}{2}E_{L}(M_{2}O).$$
(16)

В табл. 2 представлены значения энергии растворения трехвалентных примесей как по механизму компенсации заряда собственными дефектами, вакансиями кальция, так и по механизму сопряженного изоморфизма. Интерстициальное растворение для трехвалентных примесей маловероятно. Так, для алюминия и неодима энергии

Чтобы различить примесные ионы в уравнениях (15), (16), (21) и (22), одновалентные ионы обозначаются буквой М вместо Ме.

Рис. 2. Энергии растворения примесей в повеллите в виде изолированных дефектов. Для замещения Са на щелочные металлы приведены энергии растворения с наиболее энергетически выгодным механизмом компенсации заряда.

интерстициального растворения при компенсации избыточного заряда примеси вакансиями кальция составляют 11.15 и 16.15 эВ соответственно.

Из табл. 2 видно, что при сопряженном изоморфизме наиболее выгодными компенсаторами заряда являются ионы натрия. Ионы калия уступают им лишь незначительно. На рис. 2 представлены данные о солегировании трехвалентных примесей натрием. Видно, что сопряженный изоморфизм позволяет значительно увеличить растворимость трехвалентных примесей.

До сих пор речь шла о растворении примесей в виде изолированных, невзаимодействующих ионов. Однако известно, что заряженные примеси могут образовывать парные, тройные и более сложные кластеры как с собственными дефектами кристалла, так и с другими примесями. В результате взаимодействия трехвалентной примеси с вакансией кальция могут образовываться заряженные кластеры:

$$Me_{Ca}^{\bullet} + v_{Ca}^{"} \Leftrightarrow (Me_{Ca}v_{Ca})'.$$
 (17)

Энергия их растворения может быть оценена следующим образом:

$$E_{S}(\text{Me}_{\text{Ca}}v_{\text{Ca}})' = \frac{1}{2}[E_{d}(\text{Me}_{\text{Ca}}v_{\text{Ca}})' + E_{d}(\text{Me}_{\text{Ca}}^{\bullet}) + + 3E_{L}(\text{CaO}) - E_{L}(\text{Me}_{2}\text{O}_{3})].$$
(18)

Результаты расчета приведены в табл. 3.

Возможно также образование нейтральных кластеров, состоящих из димера примеси и вакансии кальция:

$$2\mathrm{Me}_{\mathrm{Ca}}^{\bullet} + v_{\mathrm{Ca}}^{"} \Leftrightarrow (\mathrm{Me}_{\mathrm{Ca}}v_{\mathrm{Ca}}\mathrm{Me}_{\mathrm{Ca}})^{\times}. \tag{19}$$

Энергия растворения нейтральных примесно-вакансионных кластеров в расчете на один трехвалентный ион будет рассчитываться по уравнению

$$E_{S}\left[\frac{1}{2}(Me_{Ca}v_{Ca}Me_{Ca})^{\times}\right] = \frac{1}{2}\left[E_{d}(Me_{Ca}v_{Ca}Me_{Ca})^{\times} + (20) + 3E_{L}(CaO) - E_{L}(Me_{2}O_{3})\right].$$

Рассчитаны две конфигурации таких димерных кластеров: со взаимным расположением ионов примеси и вакансии в позициях кальция (1-2-3)и с локализацией их в (1-2-4) (рис. 1). Из табл. 3 видно, что наиболее мелкие (Al, Ga) и наиболее крупные (Nd, Pr, La) предпочитают конфигурацию (1-2-4). Примеси средних размеров, за исключением гадолиния, вероятнее всего образуют кластеры конфигурации (1-2-3). Для железа образование этих конфигураций равновероятно. Энергии растворения заряженных и нейтральных примесных кластеров с вакансией кальция представлены на рис. 3. В случае нейтральных кластеров для каждой примеси взяты значения для наиболее выгодной конфигурации. Видно, что все примеси предпочитают образование нейтральных кластеров.

Наряду с кластерами, образуемыми примесными ионами с собственными дефектами кристалла, возможно образование примесно-примесных кластеров, объединение трехвалентных примесей, вносящих избыточный положительный заряд с одновалентными примесями с избыточным отрицательным зарядом:

$$Me_{Ca}^{\bullet} + M_{Ca}' \Leftrightarrow (Me_{Ca}M_{Ca})^{\times}.$$
 (21)

тионици от т	соультаты ре	ie ie iu snepii	пт растворен	пи тремвалет	ттых приме	сен в виде не	шетеров	
Примесь		Примесно-примесные кластеры						
	•	енные v _{Ca})'		$_{\rm a}$ – Me _{Ca}) $^{\times}$ 2–3	(Me _{Ca} -v _C	a-Me _{Ca})× 2–4	(Me–Na) [×]	
	E_d	<i>E_S</i> Ур. (16)	E_d	<i>E_S</i> Ур. (18)	E_d	<i>E_S</i> Ур. (18)	E_d	<i>E_S</i> Ур. (20)
Al	-7.55	5.42	-40.23	4.40	-40.94	4.04	-16.38	3.18
Ga	-6.42	4.76	-37.55	3.73	-37.84	3.58	-15.53	2.02
Fe	-6.26	4.27	-37.08	3.34	-37.08	3.34	-14.91	2.02
Yb	-0.03	2.97	-25.71	1.57	-24.21	2.32	-8.68	0.80
Y	-0.33	2.09	-26.54	0.64	-25.04	1.39	-9.07	0.11
Tb	2.22	1.92	-21.30	0.48	-20.12	1.06	-6.36	0.18
Gd	2.74	1.80	-17.39	1.80	-18.8	1.10	-5.94	0.39
Eu	2.87	1.79	-19.78	0.46	-18.53	1.10	-5.71	-0.31
Nd	-0.66	0.02	-24.38	0.04	-25.97	-0.76	-9.40	2.12
Pr	-0.38	-0.04	-23.82	-0.03	-25.42	-0.83	-9.12	-2.19
La	1.93	0.23	-19.12	0.23	-20.88	-0.66	-6.84	-2.00

Таблица 3. Результаты расчета энергии растворения трехвалентных примесей в виде кластеров

Энергия растворения таких кластеров может быть оценена следующим образом:

$$E_S(\text{Me}_{\text{Ca}}\text{M}_{\text{Ca}})^{\times} = E_d(\text{Me}_{\text{Ca}}\text{M}_{\text{Ca}})^{\times} +$$

+ $2E_L(\text{CaO}) - \frac{1}{2}E_L(\text{Me}_2\text{O}_3) - \frac{1}{2}E_L(\text{M}_2\text{O}).$ (22)

Для трехвалентных примесей наиболее выгоден сопряженный изоморфизм с натрием. В табл. 3 приведены результаты расчета для кластеров ($Me_{Ca}Na_{Ca}$)[×].

Сравнение рис. 2 и 3 свидетельствует о том, что зависимости, характеризующие растворение в виде примесно-вакансионных кластеров (рис. 3),

попадают в интервал значений, находящихся между зависимостью энергии растворения изолированных трехвалентных ионов и зависимостью, характеризующей сопряженный изоморфизм (рис. 2). А изоморфизм кластеров одновалентных и трехвалентных ионов является наиболее выгодным механизмом растворения трехвалентных примесей.

Образование кластеров одновалентных примесей с компенсирующими их заряд вакансиями кислорода также позволяет уменьшить энергию

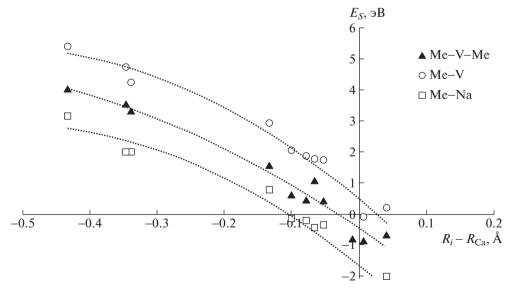


Рис. 3. Энергии растворения трехвалентных примесей в повеллите в виде кластеров.

растворения примесей. В этом случае энергия растворения определяется следующим образом:

$$E_{S} = \frac{1}{2} [E_{d} (Me_{Ca}v_{O}Me_{Ca})^{\times} + E_{L}(CaO) - \frac{1}{2} E_{L}(Me_{2}O)].$$
(23)

Для Li, Na и K энергии дефектов $E_d ({\rm Me_{Ca}} v_{\rm O} {\rm Me_{Ca}})^{\times}$ составляют 48.71, 50.36 и 53.43 эВ соответственно. Энергии растворения, приходящиеся на один ион примеси, составляют 3.42, 2.14 и 2.12 эВ. Данные табл. 2 (уравнение (5) свидетельствуют о том, что образование кластеров понижает энергию растворения на 20-26% по сравнению со статистическим распределением дефектов. Образование нейтральных кластеров одновалентных примесей с вакансиями кислорода позволяет не только увеличить растворимость примесей, но и снижает вероятность образования центров окраски F^+ и F, представляющих собой вакансии кислорода, захватившие один или два электрона.

Возможны также образование кластеров между интерстициально и изоморфно входящими одновалентными примесями и растворение одновалентных примесей по механизму

$$Me_2O + Ca_{Ca}^{\times} \Leftrightarrow (Me_1Me_{Ca})^{\times} + CaO.$$
 (24)

При этом энергии кластеров (E_d) составляют 5.59, 10.08 и 15.56 эВ для Li, Na и K соответственно. Энергии растворения кластеров, оцененные по уравнению

$$E_S = E_d ({\rm Me_1 Me_{Ca}})^{\times} + E_L ({\rm CaO}) - E_L ({\rm Me_2 O}), \quad (25)$$
 представляют собой величины $-0.09, \, 0.18$ и 2.55 эВ. Энергии растворения примесей в расчете на один ион еще в 2 раза меньше. Сравнение с данными, представленными в табл. 2, свидетельствует о том, что образование кластеров между интерстициально и изоморфно входящими одновалентными примесями значительно понижает энергию их растворения, особенно для лития и натрия.

ЗАКЛЮЧЕНИЕ

Сравнение разных механизмов растворения одновалентных примесей свидетельствует о том, что для калия наиболее энергетически выгодно замещение иона кальция при компенсации заряда вакансиями кислорода. Для ионов лития и натрия оптимальным способом растворения является сочетание изоморфного замещения кальция с интерстициальным вхождением в кристалл. Особенно большой энергетический выигрыш дает образование их кластеров. Образование нейтральных кластеров одновалентных примесей с вакансиями кислорода позволяет не только увеличить растворимость примесей, но и снижает вероятность образования центров окраски.

Для двухвалентных примесей достаточно энергетически выгодно изоморфное замещение кальция. Для трехвалентных примесей компенсация избыточного положительного заряда может проходить за счет вакансий кальция. В интерстициальные позиции двухвалентные и трехвалентные ионы не встраиваются.

Сравнение зависимостей энергий растворения одно-, двух- и трехвалентных примесей от разницы ионных радиусов кальция и замещающих его примесных ионов свидетельствует о том, что изовалентное замещение требует меньших энергетических затрат, чем гетеровалентное.

Компенсация заряда может происходить при сопряженном изоморфизме трехвалентного и одновалентного ионов в позиции кальция. При этом наиболее выгодными компенсаторами заряда являются ионы натрия. Ионы калия уступают им незначительно. Сопряженный изоморфизм позволяет значительно увеличить растворимость трехвалентных примесей.

Образование кластеров трехвалентных примесей с вакансиями кальция, компенсирующими их заряд, уменьшает энергию растворения примесей. Трехвалентные примеси в повеллите предпочитают образование незаряженных кластеров. А изоморфизм кластеров одновалентных и трехвалентных ионов является самым выгодным механизмом растворения трехвалентных примесей.

СПИСОК ЛИТЕРАТУРЫ

- Hu Y., Zhuang W., Ye H. et al. // J. Alloys Compd. 2005.
 V. 390. P. 226.
- Dixit P., Chauhan V., Kumar P., Pandey P.C. // J. Luminescence. 2020. V. 223. P. 117240.
- 3. Zhuang R.Z., Zhang L.Z., Lin Z.B., Wang G.F. // Mat. Res. Innovations 2008. V. 12. P. 62.
- 4. *Шилова Г.В.*, *Сироткин А.А.*, *Зверев П.Г.* // Квантовая электроника. 2019. Т. 49. С. 570.
- 5. Mikhailik V.B., Henry S., Kraus H., Solskii I. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 583. P. 350.
- 6. Lee S.J., Choi J.H., Danevich F.A. et al. // Astropart. Phys. 2011. V. 34. P 732.
- 7. Bosbach D., Rabung T., Brandt F., Fanghanel T. // Radiochim. Acta. 2004. V. 92. P. 639.
- Taurines T., Boizot B. // J. Am. Ceram. Soc. 2012. V. 95. P. 1105.
- Lin Q., Feng X. // J. Phys.: Condens. Matter. 2003.
 V. 15. P. 1963.
- Chen T., Liu T., Zhang Q. et al. // Nucl. Instrum. Method Phys. Res. A. 2007. V. 575. P. 390.
- 11. Дудникова В.Б., Антонов Д.И., Жариков Е.В., Еремин Н.Н. // ФТТ. 2022. Т. 64. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354
- 12. Gale J.D. // Z. Kristallographie. 2005. B. 220. S. 552.
- Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938.
 V. 34. P. 485.
- 14. *Александров В.Б., Горбатый Л.В., Илюхин В.В. //* Кристаллография. 1968. Т. 13. С. 512.
- Bush T.S., Gale J.D., Catlow C.R.A., Battle P.J. // Mater. Chem. 1994. V. 4. P. 831.
- 16. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.