_____ СТРУКТУРА НЕОРГАНИЧЕСКИХ _ СОЕДИНЕНИЙ

УЛК 548.736.6

КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ ОБОГАЩЕННОГО ТИТАНОМ И СУРЬМОЙ НЕЖИЛОВИТА

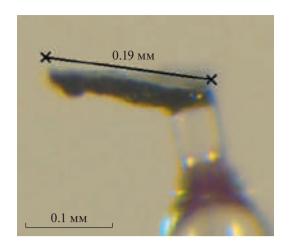
© 2023 г. Р. К. Расцветаева^{1,*}, В. М. Гридчина¹, Д. А. Варламов², С. Янчев³

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ²Институт экспериментальной минералогии РАН, Черноголовка, Россия ³Университет Святых Кирилла и Мефодия, Скопье, Республика Северная Македония

*E-mail: rast@crys.ras.ru
Поступила в редакцию 22.03.2023 г.
После доработки 23.04.2023 г.
Принята к публикации 02.05.2023 г.

Методами микрозондового и рентгеноструктурного анализа изучена разновидность минерала нежиловита, содержащая сурьму и повышенное количество титана. Дифракционный эксперимент получен от кристалла, который является сростком нежиловита и хегбомита с близкими параметрами элементарной ячейки. Параметры гексагональной ячейки изученного нежиловита: a = 5.8855(2), c = 23.092(1) Å, V = 692.73 (4) ų, пр. гр. $P6_3/mmc$. Модель структуры уточнена по ограниченному числу независимых рефлексов $231F > 4\sigma(F)$ до R = 0.08. Кристаллохимическая формула (Z = 2): $PbZn_2(Ti_{0.9}Al_{0.1})(Al_{0.6}Sb_{0.4}^{5+})Mn_2^{3+}Fe_6^{3+}$ $O_{18.5}(O,OH)_{0.5}$. Установлено распределение катионов данного состава по позициям структуры. Основу структуры минерала составляют шпинелевые слои, состоящие из связанных ребрами октаэдров Fe^{3+} . Они чередуются с двумя гетерополиэдрическими слоями: в одном слое тетраэдры Zn объединяют (Al,Sb)-октаэдры, а в другом — пятивершинники Ti объединяют димеры из октаэдров Mn^{3+} .

DOI: 10.31857/S0023476123700236, EDN: IDHMCY


ВВЕДЕНИЕ

Сложные оксиды группы шпинели образуются в рудах метасоматического генезиса, расположенных в пределах так называемой "Смешанной серии" ("Mixed Series") Пелагонийского массива (Республика Северная Македония) [1–3]. Интерес к этим объектам обусловлен высоким содержанием халькофильных элементов (Pb, Zn, Sb. As) при полном отсутствии сульфидов и сульфосолей, что приводит к необычайному кристаллохимическому разнообразию минералов. В рудах этого комплекса были открыты пять новых минералов, в том числе нежиловит $PbZn_2(Mn^{4+}, Ti^{4+})_2Fe_8^{3+}O_{19}$, найденный близ деревни Нежилово [4]. Он является цинковым представителем группы магнетоплюмбита — сложных оксидов с обшей формулой $AM_{12}O_{19}$, где A — крупные катионы (Pb, Ba, Sr или Ca), M — мелкие катионы с координационными числами от 4 до 6 (Fe^{3+} , Fe^{2+} , Mn^{4+} , Mn^{3+} , Mn^{2+} , Ti^{4+} , Cr^{3+} , Zn, Mg). Кристалло-химическая формула этих минералов в общем виде $A^{[{\rm XIII}]}(M1)^{[{\rm V}]}(M2)^{[{\rm IV}]}(M3)_2^{[6]}(M4)$ [6](M5)₆ O₁₉, Z=2 [3]. По данным электронной микроскопии кристаллы в виде очень тонких пластинок (до ~0.2 мм

в поперечнике) образуют синтаксические сростки толщиной до ~ 0.05 мм, состоящие из чередующихся вдоль оси c двух, а иногда и трех минералов. В частности, наблюдается срастание нежиловита с хегбомитом $Al_{18.0}(Fe,Zn)_{5.1}Mg_{3.9}Ti_{1.0}O_{38}(OH)_2$ (пр. гр. $P\overline{3}m1$) с параметрами тригональной ячейки: a=5.722 (1), c=23.026 (4) Å [5].

Внимание исследователей привлекла разновидность нежиловита необычного состава, обнаруженная на другом участке Нежиловского метасоматического комплекса в долине реки Бабуны в 40 км к юго-западу от Велеса. Эта часть комплекса сформировалась в результате привноса халькофильных элементов при низкой активности серы и высокой активности бария. Такие условия привели к образованию руд уникального типа [6].

Нежиловит, как и хегбомит, принадлежит к полисоматической серии тригональных (пр. гр. $P\overline{3}$ m1) и гексагональных (пр. гр. $P6_3/mmc$) минералов. Закономерное (гомоосевое) срастание данной разновидности нежиловита с хегбомитом-2N3S обусловлено близостью параметров элементарной ячейки этих минералов.

Рис. 1. Фрагмент гомоосевого сростка нежиловита с минералом надгруппы хегбомита на держателе прибора.

В настоящей работе впервые изучена кристаллохимия разновидности нежиловита, которая характеризуется присутствием сурьмы и содержанием титана, в 2 раза большим по сравнению с голотипным образцом.

Таблица 1. Кристаллографические характеристики, данные эксперимента и результаты уточнения структурной модели

Упрощенная формула	$ \begin{array}{c c} PbZn_2(Ti_{0.9}Al_{0.1})(Al_{0.6}Sb_{0.4}^{5+}) \\ Mn_2^{3+}Fe_6^{3+}O_{18.5}(O,OH)_{0.5} \end{array} $
<i>a</i> , <i>c</i> , Å	5.8855(2), 23.092(1)
V, Å ³	692.73(4)
Сингония, пр. гр., Z	Гексагональная, $P6_3/mmc$, 2
Размеры кристалла, мм	$0.19 \times 0.05 \times 0.02$
<i>T</i> , K	293
Дифрактометр	XtaLAB Synergy-DW HyPix-Arc 150°
Излучение; λ, Å	MoK_{α} ; 0.71073
Тип сканирования	ω
Учет поглощения; T_{\min}, T_{\max}	по огранке; 0.341, 0.601
Пределы h, k, l	$ \begin{vmatrix} -10 \le h \le 10, & -10 \le k \le 10, \\ -38 \le l \le 38 \end{vmatrix} $
$\theta_{ m max}$, град	75.37
Общее количество	22264, 0.05, 231
отражений, $R_{\rm ycp}$, число	
независимых отражений	
$c F > 4\sigma(F)$	
Метод уточнения	MHK по $ F $
R	0.08
Программа расчетов	AREN [8]

ЭКСПЕРИМЕНТ И УТОЧНЕНИЕ МОДЕЛИ СТРУКТУРЫ

Химический состав образцов изучали методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа Теscan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток 400 пА) и использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Диаметр электронного пучка составил 157—180 нм. Состав определяли, анализируя полированную поверхность полиминерального агрегата, в котором нежиловит присутствует в виде отдельных пластинок толщиной до 4 мкм.

Рассчитанная эмпирическая формула (даны пределы содержаний с учетом неоднородности зерен) $Pb_{0.8-1.0}Ca_{0-0.2}Zn_{2.1-2.5}Mg_{0.1}Mn_{1.8-2.0}Ti_{0.5-0.9} \\ Sb_{0.15-0.4}Fe_{5.6-6.3}Al_{0.7-1.3}O_{19}~(Z=2) показывает, что данная разновидность нежиловита характеризуется повышенным, по сравнению с голотипом, содержанием цинка, титана и сурьмы.$

Для рентгеноструктурного анализа отобрали несколько образцов. По итогам предварительных экспериментов выбрали образец наилучшего дифракционного качества от фрагмента синтаксического сростка нежиловита с минералом группы хегбомита в виде тонкой пластинки размером $0.19 \times 0.05 \times 0.02$ мм (рис. 1). Полный дифракционный эксперимент получен при температуре 293 К с помощью рентгеновского дифрактометра XtaLAB Synergy-DW с детектором счета фотонов HyPix-Arc 150° (табл. 1). Интегрирование дифракционных пиков, коррекцию на фактор Лоренца и поляризацию излучения провели с использованием комплекса программ CrysAlis-Pro 1.171.42.80a [7].

Эксперимент получен от синтаксического сростка двух фаз с доминированием нежиловитового компонента. Удалось выделить ячейку с гексагональными параметрами, соответствующими элементарной ячейке нежиловита: a = 5.8855(2), $c = 23.092(1) \text{ Å}, V = 692.73(4) \text{ Å}^3, \text{ пр. гр. } P6_3/mmc.$ Дифракционный эксперимент составили 22264 отражения с $F > 4\sigma(F)$, а после усреднения эквивалентов ($R_{\rm vcp} = 0.05$) набор данных содержал 360 рефлексов с $F > 4\sigma(F)$. Хотя 80% детектированных отражений укладывались в ячейку нежиловита, разделить рефлексы, отвечающие каждой из фаз, не удалось, и уточнение модели осуществляли по ограниченному числу (231) независимых отражений с $F > 4\sigma(F)$. Из-за вклада второго компонента в перекрывающиеся рефлексы *R*-фактор оставался на уровне ~8%.

При исследовании структуры в качестве стартового набора использовали координаты атомов структуры нежиловита [4]. Катионы распределяли по позициям модели, опираясь на состав,

Позиция	x/a	y/b	z/c	Q	$B_{\mu_{30}}$, Å ²
\overline{A}	2/3	1/3	1/4	2 <i>d</i>	2.58(19)
<i>M</i> 1	0	0	0	2 <i>a</i>	0.75(49)
<i>M</i> 2	0	0	1/4	2b	1.0(2)
<i>M</i> 3	1/3	2/3	0.0242(2)	4 <i>f</i>	0.69(25)
<i>M</i> 4	2/3	1/3	-0.1898(2)	4 <i>f</i>	0.51(30)
<i>M</i> 5	0.1689(8)	0.339(1)	-0.1062(1)	12 <i>k</i>	0.85(13)
O1	0	0	0.156(1)	4 <i>e</i>	2.0
O2	1/3	2/3	-0.049(1)	4 <i>f</i>	2.0
О3	0.361(1)	0.180(1)	3/4	6 <i>h</i>	2.0
O4	0.143(4)	0.285(5)	0.053(1)	12 <i>k</i>	2.0
O5	0.500(3)	-0.500(3)	0.351(1)	12 <i>k</i>	2.0

Таблица 2. Координаты атомов, изотропные параметры атомных смещений ($B_{\mu_{30}}$), позиции Уайкова (Q)

Таблица 3. Характеристики координационных полиэдров

Позиция	Cостав ($Z=2$)	КЧ	Расстояния катион-анион, Å			
			Минимальное	Максимальное	Среднее	
A	Pb _{1.0}	12	2.88(1)	2.94(1)	2.91	
<i>M</i> 1	$Al_{0.6} + Sb_{0.4}^{5+}$	6	1.90(2)	1.90(2)	1.90	
<i>M</i> 2	$Ti_{0.9} + Al_{0.1}$	5	1.84(1)	2.16(2)	1.97	
<i>M</i> 3	Zn ₂	4	1.68(2)	2.05(2)	1.95	
<i>M</i> 4	Mn ₂ ³⁺	6	1.94(1)	2.084(4)	2.01	
<i>M</i> 5	Fe ₆ ³⁺	6	1.94(2)	2.13(1)	2.02	

Примечание. КЧ – координационное число.

кратность позиций и межатомные расстояния в полиэдрах, с учетом параметров атомных смещений из позиций. Методом наименьших квадратов уточняли позиции атомов и параметры атомных смещений катионов в анизотропном приближении. Для анионов зафиксирован общий изотропный параметр атомных смещений $B_{\rm iso}=2~{\rm Å}^2.$ Состав позиций M1 и M2 уточняли с использованием смещанных кривых атомного рассеяния. Все расчеты выполнены с помощью комплекса программ AREN [8]. Окончательные координаты атомов и характеристики атомных смещений приведены в табл. 2, межатомные расстояния и состав полиэдров — в табл. 3.

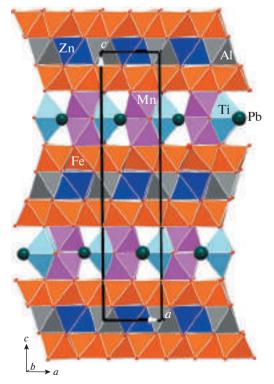
Модель структуры содержит слои, состоящие из тетраэдров, пятивершинников и октаэдров. Если нахождение цинка в тетраэдре не вызывало сомнений, то распределение катионов по позициям в пятивершиннике и октаэдрах усложнялось из-за практически одинаковых в них расстояний M—О. С учетом рассеивающей способности атомов установлено доминирование Fe^{3+} в октаэдрах шпинелевого слоя и Al в октаэдрах полиэд-

рического слоя. Атомы Mn^{3+} заполняют октаэдры другого полиэдрического слоя.

Несмотря на относительно невысокую точность определения межатомных расстояний, достоверность распределения катионов по позициям структурной модели доказана расчетом локального баланса валентностей [9] (табл. 4). Повышенная валентность 3+ для атомов железа и марганца, а также 5+ для сурьмы подтверждается с учетом окислительной обстановки в породах Пелагонийского массива.

ОПИСАНИЕ И ОБСУЖДЕНИЕ СТРУКТУРЫ

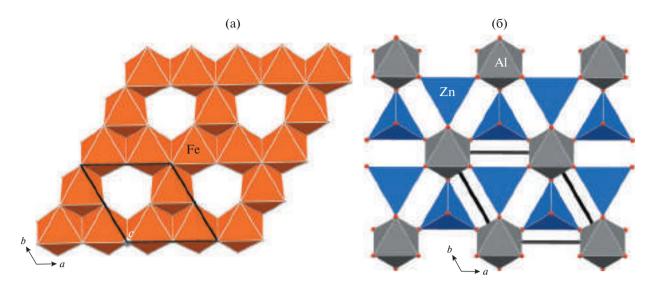
Основные особенности состава и структуры минерала отражены в его кристаллохимической формуле (Z=2), которая находится в хорошем соответствии с эмпирической: $Pb^{[XII]}(Zn_2)^{[IV]}(Ti_{0.9}$ $Al_{0.1})^{[V]}(Al_{0.6}Sb_{0.4}^{5+})^{[VI]}(Mn_2^{3+})^{[VI]}(Fe_6^{3+})^{[VI]}O_{18.5}(O,OH)_{0.5}$, где римскими цифрами в квадратных скобках обозначены координационные числа атомов.

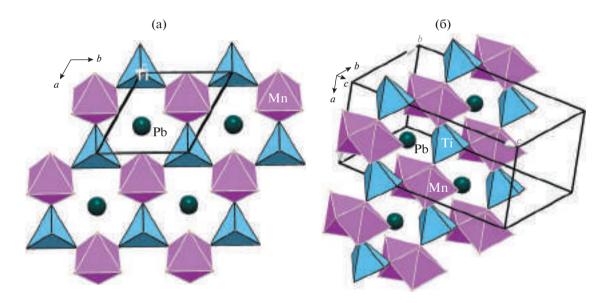

Таблица 4. Локальный баланс валентностей

Позиция	O1	O2	О3	O4	O5	$V_{\rm kar}$
Zn		1.07 × 1→		$0.39 \times 3 \rightarrow$		2.24
		× 1↓		× 1↓		
Fe^{3+}	$0.43 \times 1 \rightarrow$	$0.34 \times 1 \rightarrow$		$0.47 \times 2 \rightarrow$	$0.61 \times 2 \rightarrow$	2.90
	× 3↓	× 3↓		× 2↓	× 2↓	
Mn^{3+}			$0.41 \times 3 \rightarrow$		$0.60 \times 3 \rightarrow$	3.03
			× 2↓		× 1↓	
$Al_{0.6}^{3+}$				$0.51 \times 6 \rightarrow$		3.06
${ m Sb}_{0.4}^{5+}$				$0.90 \times 6 \rightarrow$		5.40
				$0.70_{\mathrm{cp}} \times 1 \downarrow$		
Ti ⁴⁺	$0.39 \times 2 \rightarrow$		$0.96 \times 3 \rightarrow$			3.66
	× 1↓		× 1↓			
Pb^{2+}			$0.11 \times 6 \rightarrow$		$0.13 \times 6 \rightarrow$	1.44
			× 2↓		× 1↓	
$V_{ m aH}$	1.68	2.09	2.00	2.03	1.95	

Примечание. Валентные усилия на связи анион—катион суммируются по строкам для катионов и столбцам для анионов. Направления суммирования указаны стрелками. Целые множители соответствуют числу связей данного катиона с симметрично-эквивалентными анионами или данного аниона с симметрично-эквивалентными катионами.

Упрощенная формула минерала имеет вид (Z = 2): PbZn₂(Ti_{0.9}Al_{0.1})(Al_{0.6}Sb_{0.4}⁵⁺)(Mn³⁺)₂Fe₆³⁺O_{18.5}(O,OH)_{0.5}.


Структура нежиловита состоит из 10 слоев, перпендикулярных оси *с* гексагональной ячейки


Рис. 2. Общий вид структуры нежиловита вдоль оси c.

(рис. 2). Четыре слоя состоят из Fe-октаэдров, связанных по ребрам в шестичленные кольца, с расстояниями Fe-O в пределах 1.94(2)-2.13(1) Å (рис. 3а). Два слоя содержат объединенные вершинами октаэдры и тетраэдры в соотношении 1:1 (рис. 3б). В тетраэдрах находится цинк с расстояниями Zn-O в пределах 1.68(2)-2.05(2) Å, а октаэдры заняты Al, Al-O = 1.90(2) Å. Увеличенные расстояния в АІ-октаэдре обусловлены вхождением в него более крупных атомов сурьмы, которые составляют 40% смешанного состава. Для алюминия характерна как тетраэдрическая, так и октаэдрическая координация, при которой он формирует разнообразные постройки от дискретных октаэдров до каркасных. Например, в структуре ташелгита [10], сложного по составу и строению оксида, роль алюминия многоплановая. Атомы Al занимают позиции в тетраэдрах (расстояния Al-O в пределах 1.65-1.85 Å) и преимущественно в октаэдрах с расстояниями Al-O 1.68-2.14 и 1.76-2.06 Å.

Октаэдрический и гетерополиэдрический слои, соединяясь вершинами и ребрами полиэдров, образуют блоки, характерные для структур шпинели и минералов полисоматической серии хегбомита. В минералах группы хегбомита шпинелевые блоки (*S*-блоки) регулярно чередуются с блоками ноланитового типа (*N*-блоки) в разных пропорциях [5]. Полиэдрический слой в *N*-блоке состоит из октаэдров и тетраэдров в соотношении 1:1 и топологически аналогичен нежиловитовому в проекции на плоскость (001) (рис. 4а). Хотя в этой проекции гетерополиэдрические слои нежи-

Рис. 3. Фрагменты структуры нежиловита в проекции на плоскость (001): а — октаэдрический слой, б — полиэдрический слой из тетраэдров и октаэдров.

Рис. 4. Фрагмент структуры нежиловита: а — слой из пятивершиников и октаэдрических димеров в проекции на плоскость (001), 6 — в перспективном ракурсе.

ловита и хегбомита выглядят одинаково, устройство слоя в нежиловите иное: при наклоне оси 3 видно, что октаэдры объединяются гранями в димеры, а вместо тетраэдров находятся пятивершинники (рис. 4б). Слияние двух гетерополиэдрических слоев ноланитового блока и последующая его трансформация приводят к образованию крупной полости в структуре нежиловита. Эта полость занята Рb в 12-вершиннике с расстояниями в пределах 2.88(1)—2.94(1) Å, что является главным различием в составе обоих минералов.

Отличия в составе изученной в настоящей работе разновидности нежиловита от голотипа не-

жиловита [4] касаются главным образом распределения катионов по позициям двойного слоя. Так, в пятивершиннике исследованного минерала находится Ті (с небольшой примесью Al) с расстояниями Ті—О в пределах 1.84(1)—2.16(2) Å, а в октаэдре располагается Mn^{3+} с расстояниями Mn^{3+} —О 1.94(1)—2.084(4) Å. В октаэдрах с общей гранью расстояние между центрирующими их катионами Mn^{3+} — Mn^{3+} < 3 Å и составляет 2.78(1) Å. В голотипном образце нежиловита [4] пятивершинник с расстояниями 1.84(2)—2.46(2) Å занят Fe^{3+} с небольшой примесью Mn^{4+} , а в октаэдр помещен Mn^{4+} и Ті, в то время как Mn^{3+} находится в

октаэдрическом слое совместно с Fe^{3+} . Как было показано выше, октаэдр M1 в полиэдрическом слое шпинелевого блока в обоих минералах занят Al, но в голотипе он занят этим элементом целиком, а в исследованном минерале с меньшим количеством Al и значительным количеством Sb эти элементы дополняют друг друга.

выводы

Результаты рентгеноструктурного исследования образца нежиловита в срастании с хегбомитом-2N3S позволяют считать, что полученная модель соответствует химическому составу и распределение катионов по позициям структуры достоверно в достаточной степени. Это дает основание для дальнейшего использования найденной модели при уточнении структуры по дифракционным данным для монокристалла. В случае находки монокристаллических образцов высокотитанового нежиловита или нежиловита с высоким содержанием сурьмы эта модель будет интересна при исследовании соответствующих потенциально новых минералов.

Поскольку минералы группы магнетоплюмбита обладают ферримагнитными свойствами, которые находят применение в технике, присутствие сурьмы может влиять на эти свойства. Исследование разновидности нежиловита, содержащей Sb, и информация о позиции этого элемента в структуре минерала могут быть полезны при синтезе материалов с магнитными свойствами.

Авторы выражают благодарность Н.В. Чуканову за предоставленные кристаллы и участие в обсуждении результатов.

Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Министерства науки и высшего образования Российской Федерации в рамках госзадания ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Chukanov N.V., Jančev S., Pekov I.V. // Macedonian J. Chem. 2015. V. 34. № 1. P. 115. https://doi.org/10.20450/micce.2015.612
- 2. Ермолаева В.Н., Варламов Д.А., Янчев С., Чуканов Н.В. // Записки РМО. 2018. Ч. 147. № 3. С. 27. https://doi.org/10.30695/zrmo/2018.1473.02
- 3. *Чуканов Н.В., Воробей С.С., Ермолаева В.Н. и др. //* Записки РМО. 2018. Ч. 147. № 3. С. 44. https://doi.org/10.30695/zrmo/2018.1473.03
- 4. Bermanec V., Holtstam D., Sturman D.et al. // Can. Mineral. 1996. V. 34. P. 1287.
- Hejny C., Armbruster Th. // Am. Mineral. 2002. V. 87. P. 277. https://doi.org/10.2138/am-2002-2-309
- Jančev S. // Geologica Macedonica. 2003. V. 17. № 1. P. 59.
- Rigaku Oxford Diffraction, 2022, CrysAlisPro Software system, version 1.171.42.80a, Rigaku Oxford Diffraction, Yarnton, UK.
- 8. *Андрианов В.И.* // Кристаллография. 1989. Т. 34. Вып. 3. С. 592.
- Brown I.D., Alternatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
- 10. *Расцветаева Р.К., Аксенов С.М., Верин И.А.* // Dokl. Chem. 2010. V. 434. P. 233. https://doi.org/10.1134/S0012500810090065