ПРИБОРЫ, АППАРАТУРА

УЛК 548.5

КОМПЛЕКС ЛАБОРАТОРНОГО РОСТОВОГО ОБОРУДОВАНИЯ ДЛЯ РАСТВОР-РАСПЛАВНОГО СИНТЕЗА КРИСТАЛЛОВ БОРАТА ЖЕЛЕЗА FeBO₃, A TAKЖE КРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ НА ЕГО ОСНОВЕ

© 2023 г. С. В. Ягупов¹, Ю. А. Могиленец¹, К. А. Селезнев¹, М. Б. Стругацкий¹, К. А. Селезнева¹, И. А. Наухацкий¹, Н. И. Снегирёв^{2,*}, М. В. Любутина², И. С. Любутин²

 1 Физико-технический институт Крымского федерального университета им. В.И. Вернадского, Симферополь, Россия 2 Институт кристаллографии им А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

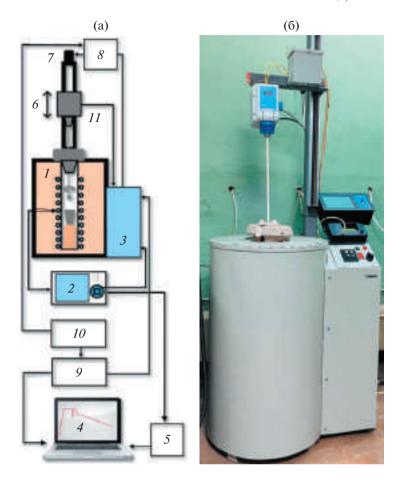
*E-mail: niksnegir@yandex.ru Поступила в редакцию 27.10.2022 г. После доработки 31.03.2023 г. Принята к публикации 31.03.2023 г.

Разработан и сконструирован лабораторный ростовой комплекс, предназначенный для растворрасплавного синтеза высокосовершенных монокристаллов бората железа и кристаллов на его основе. Оснащение ростовых установок функциональными узлами с программным управлением позволило полностью автоматизировать технологический процесс. В результате тестовых экспериментов получены монокристаллы бората железа $FeBO_3$ и монокристаллы, легированные диамагнитными атомами галлия $Fe_{1-x}Ga_xBO_3$. Высокая степень структурного совершенства образцов подтверждена рентгеновскими и электронно-микроскопическими методами высокого разрешения.

DOI: 10.31857/S0023476122600203, EDN: JNCVDT

ВВЕДЕНИЕ

Метод раствор-расплавной кристаллизации является известным и высокоэффективным способом выращивания монокристаллов [1, 2]. В частности, он используется для синтеза кристаллов семейств гранатов [3–5], ферритов [6], шпинелей [7], боратов [8–10] и множества других соединений. Кристаллизация из растворов-расплавов сочетает в себе достоинства растворных и расплавных методов и активно применяется в исследовательских работах, нацеленных на получение новых кристаллических материалов со специфическими свойствами [11–15].


Применение данного метода для синтеза кристаллов $FeBO_3$ обеспечивает получение монокристаллов высокого структурного совершенства в виде тонких пластин [16—18]. Прозрачный антиферромагнетик $FeBO_3$ обладает слабым ферромагнетизмом, в котором магнитные моменты двух подрешеток железа и слабый ферромагнитный момент лежат в базисной плоскости (пр. гр. $R\overline{3}c$). Этот кристалл является уникальным объектом для многочисленных фундаментальных исследований [19] и современных практических применений в разных областях науки и техники. При использовании монокристаллов бората железа в качестве монохроматоров в синхротронных технологиях нового поколения [20] особое внимание

уделяется их кристаллическому совершенству. Для получения высокосовершенных кристаллов FeBO₃ важно не только правильно выбрать температурный режим, но и реализовать его точное поддержание. Также важно обеспечить извлечение кристаллов до затвердевания раствора-расплава и их плавное охлаждение. Поэтому дальнейшее развитие раствор-расплавного метода синтеза FeBO₃ неразрывно связано с совершенствованием ростового оборудования и оснастки.

Цель настоящего исследования — разработка автоматизированного лабораторного ростового комплекса, предназначенного для раствор-расплавного синтеза высокосовершенных монокристаллов для современных высокотехнологичных применений и фундаментальных исследований.

КОНСТРУКЦИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЛАБОРАТОРНОГО РОСТОВОГО КОМПЛЕКСА

Комплекс включает в себя три одинаковые ростовые установки (рис. 1), состоящие из шахтной электропечи, терморегулятора и блока электромеханических устройств, и малогабаритную электропечь для наплавления шихты. Это позволяет одновременно проводить несколько эксперимен-

Рис. 1. Ростовая установка: a- блок-схема: I- электропечь шахтная СШОЛ-1.3/12-И1, 2- программный регулятор ТЕРМОДАТ-19E5, 3- силовой блок электропечи, 4- компьютер, 5- конвертер RS485/USB, 6- модуль линейного перемещения CBX1605-1000, 7- серводвигатель BLM57180-1000, 8- драйвер ACS606, 9- контроллер PLC001-G2, 10- импульсные источники питания LPS-150-48, RS-15-12, 11- верхнеприводное перемешивающее устройство SMR-308: 6- общий вил.

тов по синтезу кристаллов при разных условиях роста.

Электропечь шахтная. В качестве основного функционального узла ростовой установки была использована лабораторная шахтная электропечь СШОЛ-1.3/12-И1 (ООО "НПФ "ТермИКС", Россия), которая обеспечивает:

- рабочий температурный диапазон до 1200°C;
- возможность плавного изменения температуры;
 - быструю стабилизацию температуры;
- равномерность распределения тепла в ростовой зоне шахты печи;
- возможность неоднократного воспроизведения заданного температурного режима.

С целью изоляции нагревателя электропечь дооснастили высокотемпературной керамической трубой диаметром 95 мм и высотой 600 мм, которая выполняет роль вертикальной шахты печи (1, рис. 1а). Это позволило исключить воздей-

ствие агрессивной среды на нагреватель, а также избежать короткого электрического замыкания между металлической оснасткой и тиглем. В случае загрязнения или повреждения внутренней поверхности шахты возможна ее быстрая замена.

Для измерения температурного градиента использовали универсальный вольтметр АКИП B7-78/1 (АКИП $^{\text{TM}}$, АО "ПриСТ", Россия). Высота безградиентной зоны ($\Delta T \leq 1$ °C) составила ~7 см (рис. 2), что достаточно для размещения тигля с раствором-расплавом. Для установки тигля в безградиентную зону печи использовали подставки из огнеупорного материала. Кроме того, были разработаны и изготовлены контейнеры для фиксации тиглей в печи; специальные шахтные крышки, обеспечивающие беспрепятственное извлечение затравкодержателя с образцами из горячей зоны печи; керамические держатели для закрепления платиновой мешалки и затравкодержателя.

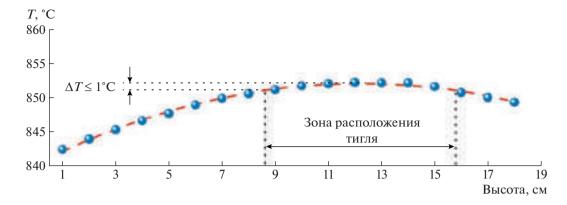


Рис. 2. Распределение температуры в шахте печи СШОЛ-1,3/12-И1.

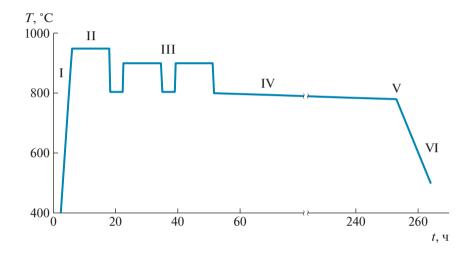
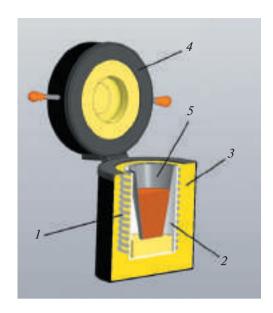


Рис. 3. Пример технологического режима синтеза монокристаллов FeBO₃.


Управление температурой в ростовой установке. В заводской комплектации электропечь СШОЛ-1,3/12-И1 оснащена терморегулятором От E5CWL без функции программного управления температурным режимом. Данный регулятор не позволяет реализовать многоэталный технологический процесс, необходимый для синтеза монокристаллов FeBO₃: нагрев (I), гомогенизация (II), многократное быстрое снижение и подъем температуры в заданном интервале (III), плавное охлаждение (IV), извлечение образцов (V) и выключение (VI) (рис. 3).

Поэтому для программного управления технологическим процессом синтеза использовали четырехканальный программный регулятор температуры ТЕРМОДАТ-19Е5 (Приборостроительный завод "Термодат" ООО НПП "Системы контроля", Россия) (2, рис. 1а), сопряженный с силовым блоком электропечи (3, рис. 1) с сохранением функций аварийных блокировок.

Выбор данного терморегулятора обусловлен следующими его характеристиками:

- возможность задания температурного режима любой сложности;
- наличие нескольких каналов вход/выход для управления, контроля и автоматической записи температурного режима;
- автоматический учет сигнала датчика "холодных спаев" при вычислении температуры;
- точность поддержания температуры составляет $\pm 0.2^{\circ}$ C;
- наличие большого дисплея позволяет наблюдать за качеством регулирования температуры (все параметры отображаются на приборе в режиме "графика");
- передача параметров на компьютер (4) с использованием конвертера RS485/USB (5, рис. 1а) для дальнейшей обработки программой "TermodatNET" и записи технологических параметров на цифровой носитель.

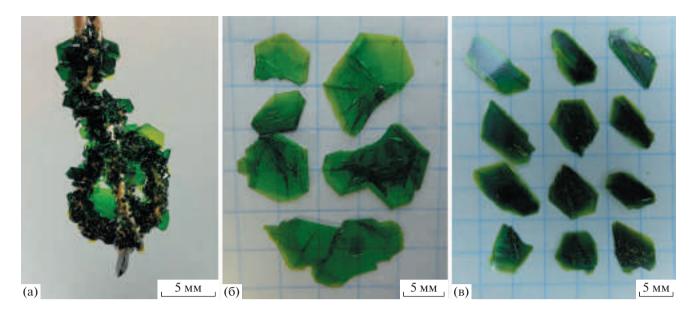
Управление температурой и ее контроль обеспечиваются термопарами типа S. Контрольная термопара располагается в шахте печи у дна тиг-

Рис. 4. Конструкция малогабаритной печи с вертикальной загрузкой: I — нагреватель, 2 — алундовый стакан, 3 — теплоизолятор, 4 — огнеупорная крышка, 5 — тигель с шихтой.

ля, а рабочий спай управляющей термопары находится в непосредственной близости от спирального нагревателя. Отметим особую важность контроля температуры именно в области размещения тигля с раствором-расплавом, так как отклонение от разработанного температурного режима приводит не только к снижению качества образцов, но и к появлению других кристаллических фаз. Калибровку используемых термопар проводили с применением термостата "холодных спаев" от терморегулятора РИФ101 (погрешность поддержания температуры в термостате не более $\pm 0.05^{\circ}$ С) и универсального вольтметра АКИП В7-78/1.

Блок электромеханических устройств. Модуль линейного перемещения CBX 1605-1000 (Pure-Logic R&D, Россия) (6, рис. 1a) предназначен для выполнения механических манипуляций в ходе ростового процесса: перемещение с заданной скоростью перемешивающего устройства, прецизионное позиционирование затравкодержателя. Он закреплен строго вертикально на несущей конструкции в виде стальной прямоугольной трубы размером $2000 \times 50 \times 50$ мм и толщиной стенки 3 мм.

Каретка (подвижная часть модуля) расположена на винте, за счет вращения которого происходит ее перемещение в вертикальном направлении. Винт вращается с помощью серводвигателя BLM57180-1000 (PureLogic R&D, Россия) (7). Драйвер ACS606 (8) обеспечивает связь двигателя с контроллером PLC001-G2 (PureLogic R&D, Россия) (9, рис. 1а). Перемещение каретки с за-


данным ускорением, скоростью и точным позиционированием осуществляется контроллером с применением программы "PLC00x-G2 Configurator". Импульсные источники тока LPS-150-48, RS-15-12 (PureLogic R&D, Россия) (10, рис. 1а) обеспечивают электропитание серводвигателя, драйвера и контроллера.

Для осуществления равномерной подачи кристаллообразующих компонент к затравочному кристаллу каждая шахтная электропечь оснащена верхнеприводным перемешивающим устройством SMR-308 (НТ Масhinery, Япония—Тайвань) (11, рис. 1а), закрепленным на каретке модуля перемещения. Перемешивающее устройство снабжено зажимным патроном, позволяющим закреплять керамический вал в виде трубки или стержня диаметром 7 мм для крепления затравкодержателя или мешалки. На цифровом дисплее устройства отображаются установленная частота вращения вала в диапазоне 0—375 об./мин и направление его вращения.

Малогабаритная печь для наплавления шихты с вертикальной загрузкой (рис. 4) разработана и изготовлена с целью оптимизации процесса подготовки к кристаллизации.

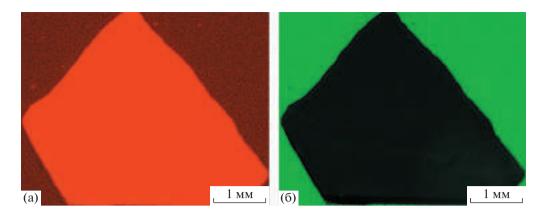
Нагреватель (1) выполнен из нихромовой проволоки диаметром 2 мм, намотанной на алундовый стакан (2) с толщиной стенки 2 мм и размером \emptyset 89 × 132 мм. Для теплоизоляции нагревательного элемента использована огнеупорная муллитокремнеземистая вата (3). Легкая открывающаяся огнеупорная крышка печи (4, рис. 4)оснащена концевым механизмом для отключения нагревателя в момент ее открытия, что обеспечивает безопасность при наплавлении шихты. Вблизи нагревательного элемента расположена управляющая термопара типа S, обеспечивающая высокую точность поддержания температуры. Для контроля температуры в тепловой зоне используется дополнительная термопара типа S с универсальным вольтметром В7-78/1. Управление печью осуществляется с помощью регулятора Omron E5CWL. Рабочая температура до 1100°C, точность поддержания температуры в шахте печи составляет ±0.5°С. Потребляемая мощность нагревателя — 450 Вт. Габаритные размеры печи \emptyset 173 × 220 mm.

Предложенная конструкция печи обеспечивает возможность вертикальной загрузки малых порций шихты без извлечения тигля, что повышает безопасность процесса наплавления, значительно сокращает время подготовки раствора-расплава, а также исключает механическую деформацию платинового тигля.

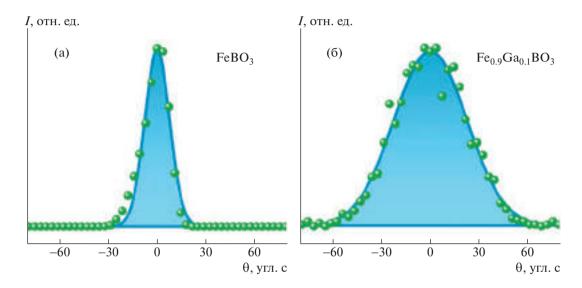
Рис. 5. Монокристаллы $FeBO_3$, полученные различными методами: a — кристаллы, выращенные на затравкодержателе, b — монокристаллы, синтезированные методом "с переворотом", b — монокристаллы, обогащенные изотопом b — конокристаллы, обогащенные b — конокристаллы, обогащенные b — конокристаллы, обогащенные b — конокристаллы, обогащенные b — конокристаллы, b — конокр

АПРОБАЦИЯ РОСТОВОГО КОМПЛЕКСА НА ПРИМЕРЕ СИНТЕЗА МОНОКРИСТАЛЛОВ НА ОСНОВЕ БОРАТА ЖЕЛЕЗА

Технологические возможности созланного лабораторного ростового комплекса позволяют реализовывать разные методики раствор-расплавного синтеза монокристаллов высокого структурного совершенства на основе бората железа, включая монокристаллы, содержащие железо, обогащенное изотопом ⁵⁷Fe. Синтез таких кристаллов проводится в системе $Fe_2O_3-B_2O_3-PbO PbF_{2}$, где $B_{2}O_{3}$ используется как кристаллообразующий компонент и входит в состав растворителя. Применение довольно агрессивного растворителя B_2O_3 -PbO-PbF₂ обусловливает необходимость использования платиновых тиглей и кристаллодержателей. Этот материал устойчив по отношению к оксидам, к смене температур и может использоваться при температурах до 1600°C.


Апробацию разработанного комплекса проводили с применением следующих методик раствор-расплавного синтеза монокристаллов бората железа:

— синтез на затравку с использованием вращающегося кристаллодержателя, обеспечивающего равномерную подачу кристаллообразующих компонент к затравочному кристаллу, а также извлечение выращенных кристаллов до затвердевания раствора-расплава [16, 17]. На рис. 5а в качестве примера показаны монокристаллы FeBO₃ на кристаллодержателе. Наиболее крупные образцы


имели размеры до 5-7 мм в поперечнике и толщину 80-140 мкм.

- синтез с переворотом тигля, который позволяет сливать высокотемпературный раствор-расплав [21], что обеспечивает возможность получения кристаллов высокого качества до 10–12 мм в поперечнике, толщиной 50–160 мкм (рис. 56).
- многократное использование раствора-расплава при синтезе монокристаллов с изотопом железа $^{57}\text{FeBO}_3$ [22]. Эта методика позволяет увеличить количество синтезируемых высокосовершенных кристаллов $^{57}\text{FeBO}_3$ из исходного объема дорогостоящего оксида $^{57}\text{Fe}_2\text{O}_3$, что существенно удешевляет процесс синтеза. На рис. 5в показаны кристаллы $^{57}\text{FeBO}_3$, выращенные из восстановленного раствора-расплава.

Кроме кристаллов "чистой" фазы FeBO3 по разработанной методике получили монокристаллы $Fe_{1-x}Ga_xBO_3$, в которых часть ионов железа замещена ионами галлия. Путем изоморфного диамагнитного разбавления можно менять темперамагнитного фазового перехода, расширит область применения таких кристаллов в современных технологиях. В частности, синтезирован ряд монокристаллов Fe_{1-х}Ga_xBO₃ с концентрацией галлия $0 \le x \le 0.2$. Элементный состав исследовали методом рентгенофлуоресцентного анализа (**РФлА**) с помощью спектрометра "Rigaku Supermini200". Компонентов растворителя в полученных образцах не обнаружено. С помощью магнитных и гамма-резонансных исследований установлено, что увеличение содержания галлия

Рис. 6. Карты пространственного распределения железа (а) и галлия (б) в кристалле $Fe_{0.94}Ga_{0.06}BO_3$.

Рис. 7. Рентгеновские кривые качания монокристаллов $FeBO_3$ (а) и $Fe_{0.9}Ga_{0.1}BO_3$ (б). Точками показаны экспериментальные данные, закрашенная область — результат аппроксимации функцией Гаусса.

в монокристаллах $Fe_{1-x}Ga_xBO_3$ ведет к уменьшению их удельной намагниченности и понижению температуры Нееля, которая составляет ~348 К для $FeBO_3$ и ~316 К для $Fe_{0.91}Ga_{0.09}BO_3$ [23].

Высокая степень структурного совершенства образцов была подтверждена исследованиями с использованием рентгеновских и электронномикроскопических методов высокого разрешения. Рисунок 6 демонстрирует карты пространственного распределения железа и галлия в монокристалле $Fe_{0.94}Ga_{0.06}BO_3$. Измерения проведены с помощью $P\Phi_{\Lambda}A$ -спектрометра Orbis EDAX в режиме ускоряющего напряжения 30 кВ, 100 мкА. Размер области сканирования — 30 мкм.

Известно, что при синтезе кристаллов "смешанного" состава отклонение параметров кристаллизации от заданной программы приводит к появлению зонарной структуры за счет периодического изменения концентрации захватываемой примеси [2]. Как видно из рис. 6, распределение элементов Fe и Ga в синтезированном кристалле $Fe_{0.94}Ga_{0.06}BO_3$ гомогенно (в пределах разрешающей способности метода). Это позволяет сделать вывод о стабильности поддержания параметров кристаллизации в разработанном ростовом комплексе.

На рис. 7 представлены рентгеновские кривые качания, полученные для синтезированных кристаллов $FeBO_3$ и $Fe_{0.9}Ga_{0.1}BO_3$ (рефлекс 104 в ромбоэдрической установке) на рентгеновском дифрактометре (CuK_{α} -излучение, $\lambda=1.54178$ Å), оснащенном Ge (022) монохроматором. Поправка на дисперсию и аппаратурное уширение составляет ~10".

Кривые качания имеют форму, близкую к гауссовой, и сравнительно небольшие полуширины: $\sim 18''$ для FeBO₃ и $\sim 50''$ для Fe_{0.9}Ga_{0.1}BO₃. Некоторое уширение кривой качания кристалла

 $Fe_{0.9}Ga_{0.1}BO_3$ связано с тем, что из-за различия ионных радиусов Fe^{3+} и Ga^{3+} ионы галлия являются дефектами в структуре $FeBO_3$ [16].

В ходе многочисленных экспериментов по синтезу монокристаллов на основе бората железа подтверждены стабильность показателей регулирующей системы и эффективность работы лабораторного ростового комплекса.

ЗАКЛЮЧЕНИЕ

Технология выращивания монокристаллов FeBO₃ методом раствор-расплавной кристаллизащии требует нестанлартного ростового оборудования и оснастки. В результате проведенной работы были подобраны необходимые комплектующие и проработаны технические решения по их сопряжению. Сконструирован лабораторный ростовой комплекс, состоящий из трех ростовых установок и малогабаритной печи, которая служит для наплавления шихты. Автоматизация ростового процесса обеспечивает существенное сокращение времени подготовки и проведения кристаллизации, а также позволяет выращивать монокристаллы $FeBO_3$ высокого структурного совершенства. Разработанный ростовой комплекс и применение различных методик синтеза монокристаллических структур на основе FeBO₃ позволяет в определенной степени управлять процессом кристаллизации и с хорошей воспроизводимостью получать образцы кристаллов с заданными параметрами.

Несомненным достоинством ростового комплекса является использование узлов и агрегатов российского производства. Разработанный ростовой комплекс может быть использован для раствор-расплавного синтеза других соединений в воздушной атмосфере при температурах до 1200°C.

Исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-29-12016/21-мк) в части расширения технологических возможностей, настройки и подготовки к эксплуатации лабораторного ростового оборудования, а также синтеза монокристаллов и рентгеновского анализа. РФлА-измерения проведены при поддержке Министерства науки и высшего образования РФ в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" с использованием оборудования ЦКП. Шахтные печи СШОЛ-1.3/12-И1, терморегуляторы ТЕРМОДАТ-19Е5 и верхнеприводные перемешивающие устройства SMR-308 приобретены в рамках Программы развития ФГАОУ ВО "КФУ им. В.И. Вернадского" на 2014—2024 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тимофеева В.А*. Рост кристаллов из растворов-расплавов. М.: Наука, 1978. 268 с.
- 2. *Вайнштейн Б.К.* Современная кристаллография. Т. 3. М.: Наука, 1979. 408 с.
- 3. *Тимофеева В.А., Квапил И.* // Кристаллография. 1966. Т. 11. С. 289.
- 4. *Рябцев Н.Г.* Материалы квантовой электроники. М.: Сов. радио, 1972. 384 с.
- 5. *Куприянов М.Ф., Кабиров Ю.В., Рудская А.Г. и др.* Физико-химические основы создания активных материалов. Ростов-на-Дону: ЮФУ, 2011. 278 с.
- 6. *Летюк Л.М., Журавлев Г.И.* Химия и технология ферритов. Л.: Химия, 1983. 256 с.
- 7. *Elwell D.* Man-made gemstones. New York: E. Horwood, 1979. 191 p.
- 8. Bezmaternykh L.N., Kharlamova S.A., Temerov V.L. // Crystallography Reports. 2004. V. 49. P. 855. https://doi.org/10.1134/1.1803319
- 9. Bezmaternykh L.N., Temerov V.L., Gudim I.A. et al. // Crystallography Reports. 2005. V. 50. P. 97. https://doi.org/10.1134/1.2133981
- 10. Diehl R., Jantz W., Nolang B.I. et al. // Current Topics in Materials Science. New-York: Elsevier, 1984. P. 87.
- 11. Леонюк Н.И. // Кристаллография. 2008. Т. 53. С. 546.
- 12. *Маслов В., Воронов В., Исхакова Л. и др. //* Неорган. материалы. 2019. Т. 15. С. 1219.
- 13. *Кузьмин Н., Мальцев В., Волкова Е. и др. //* Неорган. материалы. 2020. Т. 56. С. 873.
- 14. *Коржнева К., Исаенко Л., Елисеев А. и др.* // Фундаментальные проблемы современного материаловедения. 2018. Т. 15. С. 11.
- 15. *Мурашкевич А.Н., Жарский И.М.* Теория и методы выращивания монокристаллов. Минск: БГТУ, 2010. 213 с.
- Smirnova E.S., Snegirev N.I., Lyubutin I.S. et al. // Acta Cryst. B. 2020. V. 76. P. 1100. https://doi.org/10.1107/S2052520620014171
- 17. *Snegirev N., Lyubutin I., Kulikov A. et al.* // J. Alloys Compd. 2021. V. 889. P. 161702. https://doi.org/10.1016/j.jallcom.2021.161702
- 18. Kotrbova M., Kadečková S., Novak J. et al. // J. Cryst. Growth. 1985. V. 71. P. 607.
- Овчинников С.Г., Руденко В.В., Казак Н.В. и др. // ЖЭТФ. 2020. Т. 158. С. 184.
- Potapkin V., Chumakov A.I., Smirnov G.V. et al. // J. Synchrotron Radiat. 2012. V. 19. P. 559. https://doi.org/10.1107/S0909049512015579
- 21. Ягупов С.В., Могиленец Ю.А., Снегирёв Н.И. и др. Способ выращивания монокристаллов ⁵⁷FeBO₃ высокого структурного совершенства. Патент РФ № 2740126.
- 22. Ягупов С.В., Могиленец Ю.А., Снегирёв Н.И. и др. Способ многократного использования растворарасплава при синтезе ⁵⁷FeBO₃. Патент РФ № 2769681.
- 23. Снегирёв Н.И., Богач А.В., Любутин И.С. и др. // Физика металлов и металловедение. 2023. Т. 124. С. 141., EDN: KVXUCB https://doi.org/10.31857/S0015323022601325