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С помощью импульсного электронографа исследован фазовый переход в пленке Ge2Sb2Te5 (GST) 
толщиной ~10 нм при ее нагреве от комнатной температуры до ~400°С. В процессе кристалли-
зации свободновисящего аморфного образца обнаружено формирование гексагональной фазы 
GST, в которой перемешивание Sb и Ge приводит к формальному нарушению трансляцион-
ной симметрии и симметрии элементарной ячейки. Однако при нагреве идентичной аморфной 
пленки GST на углеродной мембране кристаллическое состояние представлено лишь кубической 
фазой. В рамках теории Филлипса предложено качественное объяснение такого наноразмерного 
эффекта в GST, которое открывает новые возможности управления структурным упорядочением 
в материалах фазовой памяти.
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ВВЕДЕНИЕ
Обратимые фазовые переходы в халькогенид-

ных соединениях IV–VI групп химических эле-
ментов вызвали огромный интерес как в фунда-
ментальном, так и в практическом аспекте. Кар-
динальное отличие электрической проводимости 
и оптических свойств (пропускание/отражение 
света) в аморфных и кристаллических состояни-
ях в совокупности с возможностью многократных 
переходов между ними стало основой их использо-
вания для энергонезависимого хранения информа-
ции, а также в области фотоники [1–5]. Контроли-
руемое изменение структуры материалов фазовой 
памяти может происходить под действием тепло-
вого воздействия, электрического импульса, лазер-
ного излучения, изменения давления в среде. По-
вышение быстродействия, увеличение количества 
циклов записи, а также уменьшение энергозатрат 
стали основными направлениями исследований во 
многих работах (например, [1–5]).

Соединение Ge2Sb2Te5 (GST) – наиболее пер-
спективный представитель халькогенидных полу-
проводников в области создания элементов памяти 

с произвольным доступом (PCRAM – Phase-change 
Random Access Memory) [6–11]. Фазовый переход в 
GST может происходить в результате нагрева мате-
риала. При повышении температуры (T) до ~160°С 
GST переходит из аморфного состояния в кристал-
лическое, которое представлено кубической  (с) 
гранецентрированной формой, а дальнейший на-
грев до ~250°С сопровождается формированием 
уже гексагональной (h) фазы [1, 12]. Обратимость 
такого процесса в течение огромного количества 
циклов является отличительной чертой материалов 
фазовой памяти.

Однако оказалось, что в практическом аспекте 
зарождение h-фазы ограничивает скорость быстро-
действия, увеличивает энергозатраты и уменьшает 
срок службы устройства [13–15]. Поэтому пред-
ставляется исключительно важным избежать такой 
“паразитной” структуры в процессе элементарно-
го акта записи информации. Успешная реализация 
этой стратегии становится важным элементом ис-
пользования подобных материалов.

В настоящей работе продемонстрирован метод, 
позволяющий решить эту важную задачу. В рамках 
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контроля структурного упорядочения в материалах 
фазовой памяти исследовано влияние углеродной 
подложки на формирование h-фазы при нагре-
вании тонкого образца GST. Одновременно была 
приготовлена и взята для сравнения свободновися-
щая пленка материала фазовой памяти. Оба образ-
ца первоначально находились в аморфном состоя-
нии при комнатной температуре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
В работе использована установка ультрабыстрой 

электронной дифракции, в которой тонкопленоч-
ный образец зондируют на просвет ультракорот-
кими электронными импульсами [16, 17]. Элек-
тронный сгусток с кинетической энергией 47 кэВ 
(содержащий ~103 электронов в каждом импульсе) 
получен в результате облучения полупрозрачного 
плоского металлического катода на основе плен-
ки золота третьей гармоникой фемтосекундного 
Ti:Sapphire лазера (на длине волны l ≃ 267 нм). 
Частота повторения лазерных импульсов в экс-
перименте – 1 кГц. В области образца (вакуум на 
уровне ~10–8 торр получен с помощью безмасляно-
го насоса) диаметр электронного пучка составляет 
~100 мкм. Позиционно-чувствительная схема де-
тектирования собрана из люминофорного экрана, 
информацию с которого считывала камера с CCD-
матрицей (ПЗС-матрицей).

Такой прибор позволяет проводить измерения 
двух типов. С одной стороны, при возбуждении 
образца ультракороткими лазерными импульса-
ми, оптически синхронизированными с зондиру-
ющим фотоэлектронным импульсом, открывается 
возможность наблюдения структурной динамики 
(например, лазерно-индуцированных фазовых пе-
реходов) с помощью ультрабыстрой электронной 
дифракции [18]. Необходимым условием для это-
го является накопление сигнала от многих строго 
обратимых процессов, сопровождающихся изме-
нением картины электронной дифракции. В та-
ких условиях метод “накачка–зондирование” 
(pump–probe) позволяет развернуть исследуемый 
процесс во времени. С другой стороны, данный 
прибор может быть использован в “классическом” 
режиме для наблюдения электронной дифракции 
в тонких кристаллах в статике при разных темпе-
ратурах. В настоящей работе использован именно 
этот подход.

Для измерений подготовлены тонкопленочные 
образцы GST двух типов толщиной ~10 нм, из-
начально находившиеся в аморфном состоянии 
(рис. 1). Напыление пленок осуществляли с по-
мощью магнетрона постоянного тока с исполь-
зованием стехиометрической мишени Ge2Sb2Te5. 
В первом случае вещество наносили на свежий 
скол кристалла NaCl с последующим переносом 

Углеродная 
пленка

GST

Пучок
электронов
47 кэВ

Медная 
сетка

ПЗС-матрица

Рис. 1. Принципиальная схема измерений с использованием двух образцов GST: слева – свободновисящая пленка, полу-
ченная путем переноса на медную сетку, справа – образец на опорной мембране из аморфного углерода на медной сетке.
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материала (после растворения соли в воде) на чи-
стую медную сетку. Во втором случае пленку GST 
по аналогичной процедуре переносили на тради-
ционно применяемую в просвечивающей элек-
тронной микроскопии (ПЭМ) опорную мембрану, 
в роли которой выступала медная сетка, покрытая 
слоем аморфного углерода толщиной 15–20 нм. В 
эксперименте применены две пары медных сеток, 
различающихся пространственным периодом, со-
ставляющим x = 64 или 17 мкм. Важно отметить, 
что пленки GST для обоих образцов формирова-
лись одновременно в отдельной вакуумной камере 
с магнетроном. 

Держатель образца был выполнен из особо чи-
стой меди марки М0 и представлял собой брусок 
размером 10 × 13 × 60 мм. Внутри этого бруска рас-
полагался керамический нагреватель диаметром 
6 мм, длиной 20 мм и мощностью 70 Вт, что обе-
спечивало нагрев образца до 400°C. В непосред-
ственной близости от нагревателя (внутри бруска) 
размещена термопара. Контроль температуры шел 
в режиме онлайн.

Для прохождения зондирующего электронного 
пучка в бруске сделаны два отверстия диаметром 
2 мм. Образцы диаметром 3 мм накладывали на 
нагреваемую поверхность (на расстоянии 10 мм от 
нагревателя и термопары) и для хорошего тепло-
вого контакта прижимали к медному бруску жест-
кой латунной пластиной. Для предотвращения 
потери тепла всю конструкцию с помощью тон-
костенной керамической трубки крепили к узлу 
перемещения, с помощью которого можно было 

прецизионно позиционировать образец относи-
тельно пучка электронов.

Поскольку при нагреве результаты экспери-
мента не зависели от величины x, можно предпо-
ложить, что температуры образца и нагревателя 
совпадали. Подготовленные образцы поочередно 
помещали в вакуумную камеру электронографа 
для наблюдения фазового перехода при повыше-
нии температуры. Скорость нагрева в обоих слу-
чаях ~10°С/мин. Оценивая характерное время 
прохождения тепла через углеродную подложку по 
соотношению

t ~ d2/a,

где d ~ 10–8 м – толщина подложки и a ~ 10–8 м2/с – 
коэффициент температуропроводности пленки 
углерода [19], получаем t ~ 10–8 с. Это свидетель-
ствует в пользу того, что в эксперименте образец 
GST на углеродной пленке быстро реагировал на 
изменение температуры нагревателя. Поэтому в 
обоих случаях (рис. 1) температура образца прак-
тически совпадала с температурой нагревателя.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ АНАЛИЗ
Картина электронной дифракции в приготов-

ленной с помощью магнетронного напыления 
тонкой пленке GST при T = 23°C показана на 
рис. 2a. Два диффузных дифракционных кольца 
свидетельствуют о наличии ближнего порядка в 
структуре, характерного для аморфной фазы. Для 
сравнения на рис. 2б представлена электроно-
грамма свободновисящего образца при T = 370°С, 

(а) (б)

Рис. 2. Электронограммы аморфного (а) и свободновисящего (б) образцов пленки GST толщиной ~10 нм при 23 (a) 
и 370°С (б).
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иллюстрирующая поликристаллическое состояние 
GST. В условиях эксперимента параметр рассеяния 
s = (4p/ldB)sin(q/2) лежит в диапазоне 1–6 Å–1 (где 
ldB ≈ 0.055 Å – длина волны де Бройля, а q – угол 
рассеяния). В эксперименте электронная дифрак-
ция непосредственно на “стандартной” углеродной 
подложке не вносила значительного вклада в изме-
рения: кривые интенсивности рассеяния электро-
нов в обоих образцах в исходном аморфном состо-
янии (при комнатной температуре) были практи-
чески идентичны.

На рис. 3 показана эволюция радиального рас-
пределения интенсивности дифрактограмм, заре-
гистрированных в процессе нагрева свободнови-
сящей пленки и GST на углеродной подложке. В 
обоих случаях при повышении температуры кар-
тина электронной дифракции претерпевала суще-
ственные изменения, отвечающие структуре об-
разца при данной T (рис. 3).

Рассмотрим полученные распределения подроб-
нее. Во-первых, с ростом температуры дифракци-
онные пики становились более острыми, что осо-
бенно заметно в случае свободновисящего образца 
(рис. 3а). Действительно, согласно [1, 12, 20–23] 
для GST, изначально находившегося в аморфном 
состоянии, увеличение T до нескольких сотен гра-
дусов должно сопровождаться фазовым переходом 
в кристаллическое состояние и, соответственно, 
в случае формирования достаточно больших кри-
сталлитов отражаться в увеличении контраста кар-
тины электронной дифракции. Во-вторых, в слу-
чае первого образца (рис. 3a) с ростом температуры 
наблюдается смещение дифракционных пиков, что 
с учетом [1, 12, 20–23] указывает на формирование 

сначала кубической, а затем гексагональной фазы. 
Этот результат хорошо согласуется с [1, 12], но су-
щественно отличается от поведения второго об-
разца (пленка GST на углеродной мембране) в схо-
жих экспериментальных условиях (рис. 3б). В этом 
случае зарегистрированная картина электронной 
дифракции представлена двумя основными пика-
ми, отвечающими c-фазе. Отметим, что формиро-
вание h-фазы в этом образце может происходить 
в процессе дальнейшего нагрева до температуры, 
существенно превышающей 400°C.

Сделанные выводы о структуре образцов со-
гласуются с [24], где с наносекундным временным 
разрешением исследован обратимый лазерно-ин-
дуцированный фазовый переход в пленке GST из 
аморфного состояния в кристаллическое, которое 
представлено c-фазой. В этой работе проиллю-
стрировано изменение радиальных распределений 
интенсивности рассеяния в процессе кристалли-
зации. Согласно [24] положение крайнего левого 
пика, отвечающего аморфной фазе (на рис. 3 мак-
симум при s ≈ 2 Å–1), при переходе в кубическую 
структуру остается практически неизменным, что 
хорошо согласуется с поведением образца на угле-
родной подложке (рис. 3б). Однако в процессе на-
грева свободновисящей пленки GST (T > 370°С) 
проявляется дифракционный максимум при 
s ≈ 1.75 Å–1 (рис. 3a), который указывает на форми-
рование h‑фазы.

Для объяснения влияния углеродной подлож-
ки воспользуемся результатами [25], где с помо-
щью ПЭМ с коррекцией сферической аберрации 
в совокупности с методом дифракции отражен-
ных электронов детально исследован механизм 
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Рис. 3. Радиальные распределения интенсивности рассеяния электронов на свободновисящей пленке GST (а) и углерод-
ной подложке (б) при разных температурах в процессе нагрева образцов; h и c отвечают гексагональной и кубической 
фазам соответственно. Для лучшего восприятия дифракционные картины сдвинуты по вертикали.
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формирования h-фазы в пленке Ge2Sb2Te5 толщи-
ной ~20 нм. Было обнаружено, что упорядочение 
вакансий вокруг границ зерен в гранецентриро-
ванной кубической фазе является отправной точ-
кой для образования зародышей h-фазы. Как было 
отмечено, это можно предотвратить путем введе-
ния легирующей примеси, например углерода. В 
результате агрегация кластеров углерода (облада-
ющих достаточно высокой температурой плавле-
ния), преимущественно распределенных в пригра-
ничной области, способна кардинальным образом 
задержать формирование гексагональной струк-
туры в процессе нагрева. Важно подчеркнуть, что 
в [25] фактически использовано “новое” соедине-
ние CGST.

Полученные в настоящей работе результаты на-
глядно демонстрируют влияние углеродной под-
ложки непосредственно на эволюцию кристал-
лической фазы в очень тонкой пленке материала 
фазовой памяти. По аналогии с [25] можно пред-
полагать, что “контакт с углеродом” препятствует 
переходу из одного кристаллического состояния в 
другое. Однако в отличие от [25] образцом исследо-
ваний является чистый GST.

Проявление специфических наноразмерных 
эффектов, происходящих в приповерхностном 
слое очень тонкой пленки, может оказывать вли-
яние на свойства всего образца. Для пояснения 
рассмотрим “классический” способ воздействия 
на координацию атомов в халькогенидных сплавах.

Возможность изменения среднего порядка в 
расположении атомов в аморфном полупрово-
днике определяется так называемой жесткостью 
структурной сетки (RSN – Rigidity of the Structural 
Network) [2, 26–29]). Согласно этим работам порог 
жесткости определяется условием равенства чисел 
силовых констант (nC), которые зависят от коор-
динационного числа K, и степеней свободы атома 
(nDF):

nC = nDF.

Для соединений с ковалентным типом связей
nC = K2/2.

При nDF = 3 порога жесткости достигают при 
K = 2.45, а для эффективного воздействия на сред-
ний порядок в веществе необходимо обеспечить 
условие K < 2.45.

Для Sb2Te3 (лежащего, как и GST, на линии 
квазибинарного разреза GeTe–Sb2Te3 в треуголь-
нике Гиббса) KSb2Te3 ≃ 2.4, тогда как для GeTe 
KGeTe ≃  3  [29]. В общем случае для системы типа  
Ge–Sb–Te эффективное координационное число 
равно

KGe–Sb–Te ~ aKSb2Te3 + bKGeTe,
где  a  и  b  учитывают  относительные  вклады 
(a + b = 1) Sb2Te3 и GeTe соответственно. Изменяя 

значения a и b, можно, в принципе, управлять 
структурным упорядочением в материале фазо-
вой памяти. Например, в [30] показано, что при 
движении по линии квазибинарного разреза  
GeTe–Sb2Te3 в сторону Sb2Te3, когда a >> b и  
KGe–Sb–Te → 2.4 (режим малого K), заметно увели-
чивается вероятность формирования h-фазы. Здесь 
важно отметить двойственность (“полуаморф-
ность”) h-GST [1], когда положения атомов Te по-
добно случаю идеального кристалла, а перемеши-
вание Sb и Ge приводит к нарушению трансляци-
онной симметрии.

Естественно, что подобный способ изменения 
параметра K (отвечающего структурным характе-
ристикам материала) при перемещении по линии 
квазибинарного разреза не единственно возмож-
ный. Учтем, что поверхностное координационное 
число меньше аналогичного параметра K в объе-
ме. Поэтому для очень тонких пленок появляет-
ся дополнительная возможность воздействия на 
координацию атомов. Действительно, уменьше-
ние среднего K для образца, когда обе поверхно-
сти пленки “свободные” (по сравнению с GST на 
углеродной подложке), по всей видимости, сопро-
вождается ростом вероятности формирования гек-
сагональной структуры, что качественно согласует-
ся с экспериментом.

ЗАКЛЮЧЕНИЕ
В работе исследован термоиндуцированный пе-

реход из аморфного состояния в кристаллическое 
для пленок GST толщиной ~10 нм, приготовлен-
ных методом магнетронного распыления стехио-
метрической мишени Ge2Sb2Te5. Зондирование ве-
щества в процессе нагрева осуществляли методом 
электронной дифракции на просвет. Для сравне-
ния взяты свободновисящая пленка и пленка GST 
на углеродной мембране, традиционно применя-
емой в ПЭМ. В схожих экспериментальных усло-
виях при одинаковых скоростях нагрева до ~400°С 
установлено, что h-фаза проявляется исключитель-
но в случае свободновисящего образца. Во втором 
случае кристаллическое состояние представлено 
c-фазой, что, возможно, обусловлено влиянием 
углеродной подложки. Акцентируя внимание на 
очень тонких пленках материалов фазовой памя-
ти, исследованных в работе, можно предполагать 
более выраженную роль наноразмерных эффектов 
в процессах структурного упорядочения. Таким 
образом, для контроля структуры тонкого образца 
GST может быть использован контакт с пленкой 
аморфного углерода, препятствующий формиро-
ванию h-фазы в GST при нагреве.

Авторы выражают благодарность И.В. Кочикову 
за помощь в анализе распределения интенсивности 
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PARTIALLY DISORDERED CRYSTALLINE STATE  
IN A THIN Ge2Sb2Te5 FILM: MANIFESTATION  

OF THERMALLY INDUCED NANOSCALE EFFECT
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Abstract. Using a pulsed electron diffraction instrument, a phase transition in a ~10 nm Ge2Sb2Te5 (GST) 
film was studied upon heating it from room temperature to ~ 400°C. During crystallization of a free-
standing amorphous sample, the formation of a hexagonal GST phase was detected, for which mixing 
Sb and Ge leads to a formal violation of translational symmetry and unit cell symmetry. However, upon 
heating an identical amorphous GST film on a carbon membrane, the crystalline state turned out to be 
represented only by a cubic phase. Within the framework of the Phillips theory, a qualitative explanation 
is proposed for such a nanoscale effect in GST, which opens up new possibilities for controlling structural 
ordering in phase-change memory materials (PCMM).
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