Обобщены данные о термических свойствах 200 кислородных соединений, построенных из треугольных (бораты, карбонаты, нитраты) и тетраэдрических (силикаты, сульфаты) групп. На основе систематики по С.К. Филатову, базирующейся на величине остаточного заряда Z, приходящегося на один анионный полиэдр вне этого полиэдра, осуществлен анализ зависимости коэффициента объемного термического расширения αV этих соединений и их температуры плавления. Величина остаточного заряда Z анионной группы характеризует степень “полимеризации” этих групп. Подход использован для смешанных групп (тетраэдрических с разным зарядом центрального атома) и развит для гетерополиэдрических анионных групп (кислородные треугольники и тетраэдры в боратах). Показано, что объемное термическое расширение увеличивается, а температура плавления понижается по мере уменьшения остаточного заряда Z вследствие повышения размерности аниона и ослабления прочности связей катион–кислород. При одинаковом остаточном заряде Z анионной группировки разброс значений αV позволяет определить влияние заряда и размера катиона: термическое расширение увеличивается по мере уменьшения заряда и увеличения радиуса катиона. Среди изученных кислородных соединений минимальными значениями коэффициента объемного термического расширения характеризуются соединения с тетраэдрами (бораты <αV>3 = 22 × 10−6, боросиликаты <αV>27 = 29 × 10−6, алюмосиликаты <αV>27 = 28 × 10−6, силикаты <αV>34 = 27 × 10−6 °С−1). Промежуточные значения демонстрируют соединения с треугольными группами (бораты <αV>32 = 41 × 10−6, карбонаты <αV>10 = 40 × 10−6 °С−1) и бораты со смешанными анионами (<αV>40 = 43 × 10−6 °С−1). Максимально расширяются сульфаты с изолированными тетраэдрами (<αV>21 = 90 × 10−6 °С−1) и нитраты с изолированными треугольными группами (<αV>5 = 132 × 10−6 °С−1), что вызвано ослаблением связей вне анионного комплекса.
Впервые изучено термическое расширение двух модификаций α- и β-Cs2SO4, а также соединения Cs2Ca3(SO4)4 методом порошковой терморентгенографии в температурных интервалах 25–960 и 25–540°С соответственно. Модификация β-Cs2SO4 переходит в высокотемпературную модификацию α-Cs2(SO4) через двухфазную область в интервале 600–750°С. Термическое расширение всех изученных фаз сильно анизотропно: αa = 37.3(10), αb = 36.2(4), αc = 12(5), αV = 85.1(5) при 30°С для β-Cs2SO4; αa = 55(5), αc = 115(9), αV = 224(12) × 10–6 °С–1 при 750°С для α-Cs2SO4. Коэффициенты термического расширения для Cs2Ca3(SO4)4 составляют: α11 = 18.8(5), αb = 18.2(5), α33 = –7.5(2), αβ = –10.6(2), αV = 29.6(9) × 10–6 °С–1 при 25°С. Показана преемственность полиморфного превращения Cs2SO4, заключающаяся в том, что с повышением температуры в обеих модификациях гофрированные колонны, или стержни, вытянутые вдоль оси c, состоят из микроблоков Cs(SO4)6 и распрямляются за счет вращения тетраэдров SO4. Трактовка анизотропии термического расширения Cs2Ca3(SO4)4 основана на механизме покачивающихся полиэдров, выявлена шарнирная деформация на уровне микроблоков Ca(SO4)6, приводящая к большому отрицательному термическому расширению в направлении α33.
Представлены данные о синтезе двойных боратов, кристаллизующихся в системе BaO–Lu2O3–B2O3, и Eu3+-активированных люминофоров на их основе, а также о корреляциях между их химическим составом, кристаллическим строением, термическими и оптическими свойствами. На основании результатов исследования всех известных сегодня двойных Ba–Lu-боратов продемонстрировано, что поиск новых соединений в этой системе, как и разработка оптических материалов на их основе, является перспективным направлением в области создания новых функциональных материалов для светодиодных приложений.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации