Структура доменных и антифазных границ в κ-фазе оксида галлия
Структура доменных и антифазных границ в κ-фазе оксида галлия
Аннотация
Код статьи
S0023476124010057-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Вывенко О. Ф.  
Аффилиация: Физико-технический институт им. А.Ф. Иоффе
Страницы
34-39
Аннотация
Представлены результаты экспериментального исследования реальной структуры тонких пленок κ-фазы оксида галлия. Методами дифракции обратно отраженных электронов в сканирующем электронном микроскопе и просвечивающей электронной микроскопии установлено, что микро-монокристаллы κ-оксида галлия состоят из совокупности трех типов поворотных доменов орторомбической симметрии, повернутых друг относительно друга на угол 120° вокруг оси роста. Монокристаллические домены характеризуются большой плотностью прямолинейных антифазных границ, формирующих при своем пересечении структуру значительной доли доменных границ.
Источник финансирования
Российский научный фонд (23-23-00202).
Классификатор
Получено
18.05.2024
Всего подписок
0
Всего просмотров
12
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Nikolaev V.I., Stepanov S.I., Romanov A.E., Bougrov V.E. Single Crystals of Electronic Materials. Elsevier, 2019. 487 p.

2. Pearton S.J., Yang J., Cary P.H. et al. // Appl. Phys. Rev. 2018. V. 5. P. 011301. https://doi.org/10.1063/1.5006941

3. Stepanov S.I., Nikolaev V.I., Bougrov V.E. et al. // Rev. Adv. Mater. 2016. V. 44. P. 63.

4. Playford H.Y., Hannon A.C., Barney E.R. et al. // Chem. Eur. J. 2013. V. 19. P. 2803. https://doi.org/10.1002/chem.201203359

5. Chang K.-W., Wu J.-J. // Appl. Phys. A. 2003. V. 76. P. 629. https://doi.org/10.1007/s00339-002-2016-1

6. Yao Y., Okur S., Lyle L.A.M. et al. // Mater. Res. Lett. 2018. V. 6 P. 268. https://doi.org/10.1080/21663831.2018.1443978

7. Ahmadi E., Oshima Y. // J. Appl. Phys. 2019. V. 126 P. 160901. https://doi.org/10.1063/1.5123213

8. Cuscó R., Domènech-Amador N., Hatakeyama T. et al. // J. Appl. Phys. 2015. V. 117. P. 185706. https://doi.org/10.1063/1.4921060

9. Boschi F., Bosi M., Berzina T. et al. // J. Cryst. Growth. 2016. V. 443. P. 25. https://doi.org/10.1016/j.jcrysgro.2016.03.013

10. Xia X., Chen Y., Feng Q. et al. // Appl. Phys. Lett. 2016. V. 108 P. 202103. https://doi.org/10.1063/1.4950867

11. Chen X., Xu Y., Zhou D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 36997. https://doi.org/10.1021/acsami.7b09812

12. Pavesi M., Fabbri F., Boschi F. et al. // Mater. Chem. Phys. 2018. V. 205. P. 502. https://doi.org/10.1016/j.matchemphys.2017.11.023

13. Chen X., Ren F., Gu S., Ye J. // Photonics Res. 2019. V. 7. P. 381. https://doi.org/10.1364/PRJ.7.000381

14. Hou X., Zou Y., Ding M. et al. // J. Phys. D. 2021. V. 54. P. 043001. https://doi.org/10.1088/1361-6463/abbb45

15. Oshima Y., Kawara K., Shinohe T. et al. // APL Mater. 2019. V. 7. P. 022503. https://doi.org/10.1063/1.5051058

16. Nikolaev V.I., Stepanov S.I., Pechnikov A.I. et al. // ECS J. Solid State Sci. Technol. 2020. V. 9. P. 045014. https://doi.org/10.1149/2162-8777/ab8b4c

17. Shapenkov S., Vyvenko O., Ubyivovk E. et al. // Phys. Status Solidi A. 2020. V. 217. P. 1900892. https://doi.org/10.1002/pssa.201900892

18. Oshima Y., Víllora E.G., Matsushita Y. et al. // J. Appl. Phys. 2015. V. 118 P. 085301. https://doi.org/10.1063/1.4929417

19. Степанов С.И., Печников А.И., Щеглов М.П. и др. // Письма в ЖТФ. 2022. Т. 48. С. 35. https://doi.org/10.21883/PJTF.2022.19.53594.19169

20. Yakimov E.B., Polyakov A.Y., Nikolaev V.I. et al. // Nanomater. 2023. V. 13 P. 1214. https://doi.org/10.3390/nano13071214

21. Polyakov A.Y., Nikolaev V.I., Pechnikov A.I. et al. // APL Mater. 2022. V. 10. P. 061102. https://doi.org/10.1063/5.0091653

22. Cora I., Mezzadri F., Boschi F. et al. // CrystEngComm. 2017. V. 19. P. 1509. https://doi.org/10.1039/C7CE00123A

23. Fornari R., Pavesi M., Montedoro V. et al. // Acta Mater. 2017. V. 140. P. 411. https://doi.org/10.1016/j.actamat.2017.08.062

24. Zhuo Y., Chen Z., Tu W. et al. // Appl. Surf. Sci. 2017. V. 420. P. 802. https://doi.org/10.1016/j.apsusc.2017.05.241

25. Cora I., Fogarassy Zs., Fornari R. et al. // Acta Mater. 2020. V. 183. P. 216. https://doi.org/10.1016/j.actamat.2019.11.019

26. Oshima Y., Kawara K., Oshima T., Shinohe T. // Jpn. J. Appl. Phys. 2020. V. 59. P. 115501. https://doi.org/10.35848/1347-4065/abbc57

27. Shapenkov S., Vyvenko O., Nikolaev V. et al. // Phys. Status Solidi. B. 2021. V. 259. P. 2100331. https://doi.org/10.1002/pssb.202100331

28. Kneiß M., Splith D., Schlupp P. et al. // J. Appl. Phys. 2021. V. 130. P. 084502. https://doi.org/10.1063/5.0056630

Комментарии

Сообщения не найдены

Написать отзыв
Перевести