Влияние исходной структуры частиц порошка меди на каталитические свойства оксида церия
Влияние исходной структуры частиц порошка меди на каталитические свойства оксида церия
Аннотация
Код статьи
S0023476124030173-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Жигалина О. М.  
Аффилиация: Федеральный исследовательский центр химической физики РАН им. Н.Н. Семенова
Страницы
511-521
Аннотация
Методами электронной микроскопии, электронной дифракции, рентгенофазового и микрорентгеноспектрального анализов, а также программируемого температурного восстановления СО (СО-ТПВ) исследовано влияние исходной структуры частиц порошков меди на каталитическую активность катализатора CeO2/Cu. Нанокомпозиты получены методом механохимического синтеза с использованием частиц меди, различающихся по размеру и морфологии: дендриты микронных размеров и наночастицы. Показано, что активность катализатора, полученного из наноразмерной меди, в 2 раза выше, что обусловлено наличием кластеров CuxO, расположенных на атомных ступеньках нанокристаллов оксида церия. Такое расположение кластеров, по-видимому, обеспечивает отсутствие блокировки активирующих центров. Таким образом, структура поверхности частиц оксида церия, формирующаяся при использовании наноразмерного порошка меди, является ключевым фактором, ответственным за каталитическую активность.
Источник финансирования
ГЗ ФИЦ ХФ РАН им. Н.Н. Семенова (122040500058-1). ГЗ НИЦ “Курчатовский институт”.
Классификатор
Получено
04.09.2024
Всего подписок
0
Всего просмотров
13
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Soria J., Conesa J.C., Martinez-Arias A., Coronado J.M. // Solid State Ionics. 1993. V. 65. P. 755. https://doi.org/10.1016/0167-2738 (93)90191-5

2. James T.E., Hemmingson S.L., Ito T., Campbell C.T. // J. Phys. Chem. 2015. V. 119. P. 17209. https://doi.org/10.1021/acs.jpcc.5b04621

3. Lu J., Wang J., Zou Q. et al. // ACS Catal. 2019. V. 9. № 3. P. 2177. https://doi.org/10.1021/acscatal.8b04035

4. Konsolakis M., Lykaki M. // Catalysts. 2021. V. 11. № 4. P. 452. https://doi.org/10.3390/catal11040452

5. Varvoutis G., Lykaki M., Marnellos G.E., Konsolakis M. // Catalysts. 2023. V. 13. P. 275. https://doi.org/10.3390/catal13020275

6. Фирсова А.А., Морозова О.С., Леонов А.В. и др. // Кинетика и катализ. 2014. Т. 55. № 6. С. 783. https://doi.org/10.7868/S0453881114060069

7. Borchers Ch., Martin M.L., Vorobjeva G.A. et al. // J. Nanopart. Res. 2016. V. 18. P. 344. https://doi.org/10.1007/s11051-016-3640-6

8. Морозова О.С., Фирсова А.А., Тюленин Ю.П. и др. // Кинетика и катализ. 2020. Т. 61. № 5. P. 741. https://doi.org/10.31857/S0453881120050081

9. Zhigach A.N., Kuskov M.L., Leipunskii I.O. et al. // Bulletin of the Russian Academy of Sciences: Energetic. 2012. V. 3. P. 80.

10. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306

11. Konsolakis M. // Appl. Catal. B: Enviromental. 2016. V. 198. P. 49. https://doi.org/10.1016/j.apcatb.2016.05.037

12. Van Deelen T.W., Mejía C.H., De Jong K.P. // Nature Catal. 2019. V. 2. P. 955. https://doi.org/10.1038/s41929-019-0364-x

13. Cipriano L.A., Di Liberto G., Pacchioni G. // ACS Catal. 2022. V. 12. № 19. P. 11682. https://doi.org/10.1021/acscatal.2c03020

14. Gao Y., Zhang L., Van Hoof A.J.F., Hensen E.J.M. // Appl. Catal. A. General. 2020. V. 602. P. 117712. https://doi.org/10.1016/j.apcata.2020.117712

15. Cruz A.R.M., Assaf E.M., Gomes J.M., Assaf J.M. // Catal. Today. 2021. V. 381. № 1. P. 42. https://doi.org/10.1016/j.cattod.2020.09.007

16. Borchers Ch., Martin M.L., Vorobjeva G.A. et al. // AIP Adv. 2019. V. 9. P. 065115. https://doi.org/10.1063/1.5109067

17. Paier J., Penschke C., Sauer J. // Chem. Rev. 2013. V. 113. P. 3949. https://doi.org/10.1021/cr3004949

18. Chen A., Yu X., Zhou Y. et al. // Nature Catalysis. 2019. V. 2. P. 334. https://doi.org/10.1038/s41929-019-0226-6

19. Puigdollers A.R., Schlexer P., Tosoni S., Pacchioni G. //ACS Catal. 2017. V. 7. P. 6493. https://doi.org/10.1021/acscatal.7b01913

20. Kappis K., Papavasiliou J. // ChemCatChem. 2019. V. 11. № 19. P. 4765. https://doi.org/10.1002/cctc.201901108

21. Martínez-Munuera J.C., Javier G.M., Yeste M.P. et al. // Appl. Surf. Sci. 2022. V. 575. P. 151717. https://doi.org/10.1016/j.apsusc.2021.151717

Комментарии

Сообщения не найдены

Написать отзыв
Перевести