Растворение примесей в натрий-гадолиниевом молибдате NaGd(MoO<sub>4</sub>)<sub>2</sub>
Растворение примесей в натрий-гадолиниевом молибдате NaGd(MoO<sub>4</sub>)<sub>2</sub>
Аннотация
Код статьи
S0023476124040032-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Дудникова В. Б.  
Аффилиация: Московский государственный университет им. М.В. Ломоносова
Страницы
581-588
Аннотация
Методом межатомных потенциалов проведено моделирование примесных дефектов в натрий-гадолиниевом молибдате NaGd(MoO4)2. Оценена энергия растворения трех-, двух- и одновалентных примесей. Построены зависимости энергии растворения от ионного радиуса примеси. Для гетеровалентных замещений найден энергетически наиболее выгодный механизм компенсации заряда как за счет собственных дефектов кристалла, так и по схеме сопряженного изоморфизма. Определены позиции наиболее вероятной локализации дефектов. Оценено влияние разупорядочения ионов натрия и гадолиния на позиционные различия в энергии дефектов. Сравнение растворимости примесей в NaGd(MoO4)2 и изоструктурном ему CaMoO4 свидетельствует о том, что, хотя изовалентные замещения энергетически выгоднее, чем гетеровалентные, механизм сопряженного изоморфизма, обеспечивающего электронейтральность, может уравнять эти процессы.
Классификатор
Получено
21.09.2024
Всего подписок
0
Всего просмотров
13
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Майер А.А., Πровоторов М.В., Балашов В.А. // Успехи химии. 1973. Т. 42. С. 1788.

2. Трунов В.К., Ефремов В.А., Великодный Ю.А. Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.

3. Schmidt M., Heck S., Bosbach D. et al. // Dalton Trans. 2013. V. 42. P. 8387. https://doi.org/10.1039/c3dt50146a

4. Wang P., Zhang Z., Su W. et al. // Ceram. Int. 2019. V. 45. P. 21735. https://doi.org/10.1016/j.ceramint.2019.07.174

5. Huang J., Huang J., Lin Y. et al. // J. Lumin. 2017. V. 187. P. 235. https://doi.org/10.1016/j.jlumin.2016.11.078

6. Guo W., Chen Y., Lin Y. et al. // J. Phys. Appl. Phys. 2008. V. 41. Р. 115409. https://doi.org/10.1088/0022-3727/41/11/115409

7. Wu L., Chen Z., Wu Y. et al. // Cryst. Res. Technol. 2016. V. 51 (2). P. 137. https://doi.org/10.1002/crat.201500228

8. Wang Z., Li X., Wang G. et al. // Opt. Mater. 2008. V. 30. P. 1873. https://doi.org/10.1016/j.optmat.2007.12.012

9. Ren H., Li H., Zou Y. et al. // J. Lumin. 2022. V. 249. Р. 119034. https://doi.org/10.1016/j.jlumin.2022.119034

10. Wang X., Chen Z., Pan S. et al. // J. Lumin. 2022. V. 252. Р. 119367. https://doi.org/10.1016/j.jlumin.2022.119367

11. Li L., Dong D., Zhang J. et al. // Mater. Let. 2014. V. 131. P. 298. https://doi.org/10.1016/j.matlet.2014.05.205

12. Wang H., Zhou X., Yan J. et al. // J. Lumin. 2018. V. 195. P. 170. https://doi.org/10.1016/j.jlumin.2017.10.052

13. Vishwakarma P.K., Rai S.B., Bahadur A. // Mater. Res. Bull. 2021. V. 133. Р. 111041. https://doi.org/10.1016/j.materresbull.2020.111041

14. Mo F., Zhou L., Pang Q. et al. // Ceram. Int. 2012. V. 38. P. 6289. http://dx.doi.org/10.1016/j.ceramint.2012.04.084

15. Yu X., Jiang Y., Li X. et al. // CrystEngComm. 2022. V. 24. P. 805. https://doi.org/10.1039/D1CE01434J

16. Du P., Luo L., Park H.K. et al. // Chem. Eng. J. 2016. V. 306. P. 840. https://doi.org/10.1016/j.cej.2016.08.007

17. Gao Z., Tian B., Liu M. et al. // J. Non-Cryst. Solids. 2023. V. 603. P. 122114. https://doi.org/10.1016/j.jnoncrysol.2022.122114

18. Yan T., Li Z., Chen S. et al. // Ceram. Int. 2023. V. 49. P. 33681. https://doi.org/10.1016/j.ceramint.2023.08.055

19. Li A., Xu D., Tang Y. et al. // J. Lumin. 2021. V. 239. Р. 118356. https://doi.org/10.1016/j.jlumin.2021.118356

20. Zhang L., Meng Q., Sun W. et al. // Ceram. Int. 2021. V. 47. P. 670. https://doi.org/10.1016/j.ceramint.2020.08.175

21. Wang L., Liu S.Y., Song W.B. et al. // Acta Phys. Pol. A. 2023. V. 144. № 2. P. 87. https://doi.org/10.12693/APhysPolA.144.87

22. Li A., Li Z., Pan L. et al. // J. Alloys Compd. 2022. V. 904. Р. 164087. https://doi.org/10.1016/j.jallcom.2022.164087

23. Gale J.D. // Z. Kristallogr. 2005. V. 220. P. 552. https://doi.org/10.1524/zkri.220.5.552.65070

24. Дудникова В.Б., Антонов Д.И., Жариков Е.В. и др. // ФТТ. 2022. Т. 64. Вып. 10. С. 1452. https://doi.org/10.21883/FTT.2022.10.53089.354

25. Bush T.S., Gale J.D., Catlow C.R.A. et al. // Mater. Chem. 1994. V. 4. P. 831. https://doi.org/10.1039/JM9940400831

26. Дудникова В.Б., Еремин Н.Н. // Кристаллография. 2023. Т. 68. № 1. С. 11. https://doi.org/10.31857/S002347612301006X

27. Дудникова В.Б., Еремин Н.Н. // Журн. структур. химии 2023. Т. 64. № 9. С. 17248. https://doi.org/10.26902/JSC_id117248

28. Kröger F.A., Vink H.J. // Solid State Phys. 1956. V. 3 P. 307. https://doi.org/10.1016/S0081-1947 (08)60135-6

29. Урусов В.С., Еремин Н.Н. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. M.: ГЕОС, 2012. 428 с.

30. Mott N.F., Littleton M.J. // Trans. Faraday Soc. 1938. V. 34. P. 485. https://doi.org/10.1039/TF9383400485

31. Dudnikova V.B., Zharikov E.V., Eremin N.N. // Mater. Today Commun. 2020. V. 23. Р. 101180. https://doi.org/10.1016/j.mtcomm.2020.101180

32. Дудникова В.Б., Жариков Е.В., Еремин Н.Н. // ФТТ. 2019. Т. 61. Вып. 4. С. 678. https://doi.org/10.21883/FTT.2019.04.47412.311

33. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.

Комментарии

Сообщения не найдены

Написать отзыв
Перевести