- Код статьи
- S0023476124040052-1
- DOI
- 10.31857/S0023476124040052
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 69 / Номер выпуска 4
- Страницы
- 597-611
- Аннотация
- В гидротермальных условиях получены кристаллы новой структурной высокосимметричной разновидности Cs2HIn(IO3)6, которая кристаллизуется в пр. гр. R3 с параметрами элементарной ячейки: a = 11.8999(4), c = 11.6513(5) Å. Проведено кристаллохимическое сравнение с исследованной ранее триклинной модификацией. Обе структуры составлены из изолированных блоков [In(IO3)6]3–. Новая разновидность входит в семейство тригональных иодатов, изоструктурных соединению K2Ge(IO3)6. Рассмотрена локальная симметрия отдельных блоков [M(IO3)6] (M = Ge, Ti, Sn, Ga, In и ряд других металлов) и предложена структурная систематика семейств иодатов на основе сравнительного кристаллохимического анализа. Обсуждается влияние катионного состава и условий синтеза на симметрию и топологию кристаллических структур, а также влияние локальной симметрии отдельных блоков на физические свойства соединений.
- Ключевые слова
- Дата публикации
- 26.07.2025
- Всего подписок
- 0
- Всего просмотров
- 57
Библиография
- 1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci. China Chem. 2011. V. 54. P. 911. https://doi.org/10.1007/s11426-011-4289-8
- 2. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- 3. Guo S.-P., Chi Y., Guo G.-C. // Coord. Chem. Rev. 2017. V. 335. P. 44. https://doi.org/10.1016/j.ccr.2016.12.013
- 4. Mao F.-F., Hu C.-L., Chen J. et al. // Chem. Commun. 2019. V. 55. P. 6906. https://doi.org/10.1039/c9cc02774b
- 5. Jia Y.-J., Chen Y.-G., Guo Y. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 48. P. 17194. https://doi.org/10.1002/ange.201908935
- 6. Chen J., Hu C.-L., Mao F.-F. et al. // Chem. Sci. 2019. V. 10. P. 10870. https://doi.org/10.1039/c9sc04832d
- 7. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
- 8. Wu C., Lin L., Jiang X.X. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10100. https://doi.org/10.1021/acs.chemmater.9b03214
- 9. Abudouwufu T., Zhang M., Cheng S.C. et al. // Eur. J. Inorg. Chem. 2019. V. 25. P. 1221. https://doi.org/10.1002/chem.201804995
- 10. Luo M., Liang F., Hao X. et al. // Chem. Mater. 2020. V. 32. № 6. P. 2615. https://doi.org/10.1021/acs.chemmater.0c00196
- 11. Fan H.X., Lin C.S., Chen K.C. et al. // Angew. Chem. 2020. V. 59. P. 5268. https://doi.org/10.1002/anie.201913287
- 12. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2098. https://doi.org/10.1002/anie.201813968
- 13. Cao Z., Yue Y., Yao J. et al. // Inorg. Chem. 2011. V. 50. № 24. P. 12818. https://doi.org/10.1021/ic201991m
- 14. Wu Q., Liu H., Jiang F. et al. // Chem. Mater. 2016. V. 28. P. 1413. https://doi.org/10.1021/acs.chemmater.5b04511
- 15. Zhang M., Hu C., Abudouwufu T. et al. // Chem. Mater. 2018. V. 30. P. 1136. https://doi.org/10.1021/acs.chemmater.7b05252
- 16. Mao F.-F., Hu C.-L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
- 17. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Commun. 2019 V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
- 18. Xu Y., Zhou Y., Lin C. et al. // Cryst. Growth Des. 2021. V. 21. P. 7098. https://doi.org/10.1021/acs.cgd.1c00992
- 19. De Boer J.L., van Bolhuis F., Olthof-Hazekamp R.V. // Acta Cryst. 1966. V. 21 (5). P. 841. https://doi.org/10.1107/s0365110x66004031
- 20. Liminga R., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1975. V. 62. P. 4388. https://doi.org/10.1063/1.430339
- 21. Jansen M. // Solid State Chem. 1976. V. 17. P. 1.
- 22. Liang J.K., Wang C.G. // Acta Chim. Sin. 1982. V. 40. P. 985.
- 23. Schellhaas F., Hartl H.T., Frydrych R. // Acta Cryst. B. 1972. V. 28. № 9. P. 2834.
- 24. Phanon D., Bentria B., Jeanneau E. et al. // Z. Krist. 2006. V. 221. P. 635.
- 25. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. № 11. P. 1123. https://doi.org/10.1039/B612677D
- 26. Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225. https://doi.org/10.1016/j.jallcom.2004.07.037
- 27. Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. № 19. P. 6865. https://doi.org/10.1021/ja9015099
- 28. Sun C.-F., Hu C.-L., Kong F. et al. // Dalton Trans. 2010. V. 39. P. 1473. https://doi.org/10.1039/B917907K
- 29. Kim Y.H., Tran T.T., Halasyamani P.S., Ok K.M. // Inorg. Chem. Front. 2015. V. 2. P. 361. https://doi.org/10.1039/C4QI00243A
- 30. Yang B.P., Hu C.L., Xu X., Mao J.G. // Inorg. Chem. 2016. V. 55. № 5. P. 2481. https://doi.org/10.1021/acs.inorgchem.5b02859
- 31. Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698. https://doi.org/10.1039/c8tc00851e
- 32. Liu K., Han J., Huang J. et al. // RSC Adv. 2021. V. 11. P. 10309. https://doi.org/10.1039/d0ra10726c
- 33. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263. https://doi.org/10.1021/ic048428c
- 34. Belokoneva E.L., Karamysheva A.S., Dimitrova O.V., Volkov A.S. // Crystallography Reports. 2018. V. 63. P. 734. https://doi.org/10.1134/S1063774518050048
- 35. Xiao L., You F., Gong P. et al. // Cryst. Eng. Commun. 2019. V. 21. P. 4981. https://doi.org/10.1039/c9ce00814d
- 36. Liu X., Li G., Hu Y. et al. // Cryst. Growth Des. 2008. V. 8. № 7. P. 2453. https://doi.org/10.1021/cg800034z
- 37. Mitoudi Vagourdi E., Zhang W., Denisova K. et al. // ACS Omega. 2020. V. 5. № 10. P. 5235. https://doi.org/10.1021/acsomega.9b04288
- 38. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. № 5. P. 1055. https://doi.org/10.1039/c0dt01272f
- 39. Реутова О.В., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2020. T. 65. № 3. C. 441. https://doi.org/10.31857/S0023476120030273
- 40. Park G., Byun H.R., Jang J.I., Ok K.M. // Chem. Mater. 2020. V. 32. P. 3621. https://doi.org/10.1021/acs.chemmater.0c01054
- 41. Xu X., Hu C.-L., Yang B.-P., Mao J.-G. // CrystEngComm. 2013. V. 15. № 38. P. 7776. https://doi.org/10.1039/C3CE41185K
- 42. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 1. С. 59. https://doi.org/10.1134/S1063774518010029
- 43. Gurbanova O.A., Belokoneva E.L. // Crystallography Reports. 2006. V. 51. P. 577. https://doi.org/10.1134/S1063774506040067
- 44. CrysAlisPro Software System, Version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK, 2014.
- 45. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- 46. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
- 47. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
- 48. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
- 49. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- 50. Qian Z., Wu H., Yu H. et al. // Dalton Trans. 2020. V. 49. P. 8443. https://doi.org/10.1039/D0DT00593B
- 51. Hector A.L., Henderson S.J., Levason W., Webster M. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 198. https://doi.org/10.1002/1521-3749 (200201)628:13.0.CO;2-L
- 52. Yeon J., Kim S.-H., Halasyamani P.S. // J. Solid State Chem. 2009. V. 182. № 12. P. 3269. https://doi.org/10.1016/j.jssc.2009.09.021
- 53. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
- 54. Chen X., Xue H., Chang X. et al. // J. Alloys Compd. 2005. V. 398. P. 173. https://doi.org/10.1016/j.jallcom.2005.01.050
- 55. Hebboul Z., Galez C., Benbertal D. et al. // Crystals. 2019. V. 9. P. 464. https://doi.org/10.3390/cryst9090464
- 56. Chikhaoui R., Hebboul Z., Fadla M.A. et al. // Nanomaterials. 2021. V. 11. № 12. P. 3289. http://doi.org/10.3390/nano11123289
- 57. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777