Thin-film polydiacetylenes of a stable blue phase based on symmetrical and unsymmetrical diacetylene <i>N</i>-arylcarbamates

PII
S0023476124040118-1
DOI
10.31857/S0023476124040118
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 4
Pages
652-660
Abstract
The conditions and features of the formation of Langmuir monolayers of symmetrical and asymmetrical diacetylene N-arylcarbamates and the structural organization of Langmuir-Schaefer films based on them were studied. Photopolymerization of monolayer solid films of two types of molecules was monitored using absorption spectroscopy and showed the transition of diyne molecules to the blue phase polydiacetylene state. The efficiency of the solid-phase topochemical polymerization reaction in a film of symmetrical diynes turned out to be 5 times higher than in a film of asymmetrical diyne molecules. The morphology of monolayer surfaces before and after UV irradiation was studied using scanning electron microscopy.
Keywords
Date of publication
26.07.2025
Number of purchasers
0
Views
45

References

  1. 1. Wegner G. // Z. Naturforsch. 1969. B. 24. S. 824. https://doi.org/10.1515/znb-1969-0708
  2. 2. Tieke B. // Adv. Polymer Sci. 1985. V. 71. P. 79.
  3. 3. Arslanov V.V. // Adv. Colloid Interface Sci. 1992. V. 40. P. 307. https://doi.org/10.1016/0001-8686 (92)80080-H
  4. 4. Jelinek R., Ritenberg M. // RSC Adv. 2013. V. 3. P. 21192. https://doi.org/10.1039/c3ra42639d
  5. 5. Benten H., Mori D., Ohkita H., Ito Sh. // J. Mater. Chem. A. 2016. V. 4. P. 5340. https://doi.org/10.1039/c5ta10759h
  6. 6. Chen X., Zhou G., Peng X., Yoon J. // Chem. Soc. Rev. 2012. V. 41. P. 4610. https://doi.org/10.1039/c2cs35055f
  7. 7. Qian X., Städler B. // Chem. Mater. 2019. V. 31. № 4. P. 1196. https://doi.org/10.1021/acs.chemmater.8b05185
  8. 8. Fang F., Meng F., Luo L. // Mater. Chem. Front. 2020. V. 4. P. 1089. https://doi.org/10.1039/c9qm00788A
  9. 9. Yu Zh., MuYu C., Xu H. et al. // Polym. Chem. 2023. V. 14. P. 2266. https://doi.org/10.1039/d3py00213F
  10. 10. Roberts G. Langmuir-Blodgett Films. Plenum Press, 1990. P. 425.
  11. 11. Tieke B., Lieser G., Wegner G. // J. Polym. Sci. Polym. Chem. Ed. 1979. V. 17. P. 1631.
  12. 12. Tamura H., Mino N., Ogawa K. // Thin Solid Films. 1989. V. 179. P. 33.
  13. 13. Patel G.N., Khanna Y.P., Ivory D.M. et al. // J. Polym. Sci. A. 1979. V. 17. P. 899. https://doi.org/10.1002/pol.1979.180170513
  14. 14. Zhong L., Zhu X., Duan P., Liu M. // J. Phys. Chem. B. 2010. V. 114. P. 8871. https://doi.org/10.1021/jp1020565
  15. 15. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2016. V. 612. P. 463. https://dx.doi.org/10.1016/j.tsf.2016.06.044
  16. 16. Mino N., Tamura H., Ogawa K. // Langmuir. 1991. V. 7. P. 2336.
  17. 17. Alekseev A.S., Domnin I.N., Ivanov A.B. // Bulletin of the Lebedev Physics Institute. 2021. V. 48. № 11. P. 337. https://doi.org/10.3103/S1068335621110026
  18. 18. Kruchinin V.N., Repinsky S.M., Sveshnikova L.L. et al. // Thin Solid Films. 1994. V. 240. P. 131.
  19. 19. Marinichev A.N., Vyaz’min S. Yu., Domnin I.N. // Russ. J. Appl. Chem. 2005. V. 78. № 10. P. 1662.
  20. 20. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2018. V. 645. P. 108. https://dx.doi.org/101016/j.tsf.2017.10.018
  21. 21. Kim T., Ye Q., Sun I. et al. // Langmuir. 1996. V. 12. P. 6065.
  22. 22. Vyaz’min S.Y., Berezina S.E., Remizova L.A. et al. // Russ. J. Org. Chem. 2002. V. 38. P. 775.
  23. 23. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2016. V. 612. P. 463. https://dx.doi.org/10.1016/j.tsf.2016.06.0
  24. 24. Alekseev A.S., Domnin I.N., Ivanov A.B., Tereschenko N.A. // Mendeleev Commun. 2018. V. 28. P. 409. https://doi.org/10.1016/j.mencom.2018.07.0.23
  25. 25. Alekseev A.S., Ivanov A.B., Klechkovskaya V.V. et al. // Rev. Adv. Chem. 2023. V. 13. № 3. P. 265. https://doi.org/10.1134/S263482762360010X
QR
Translate