RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Dynamics of new phase formation in silicon during femtosecond laser ablation

PII
S0023476125010039-1
DOI
10.31857/S0023476125010039
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
18-27
Abstract
We experimentally demonstrated (using micro-Raman spectroscopy and transmission electron microscopy) and through numerical modeling that when an intense (1013−1014 W/cm²) femtosecond (~100 fs) laser pulse impacts the surface of silicon with (111) orientation, new polymorphic phases Si-III and Si-XII are formed on the surface and in the volume, localized in lattice defects as well as at the periphery of the ablation crater. This localization of phases is caused by the multi-stage nature of laser-induced phase transitions in silicon, specifically, the phase transitions are initiated by a shock wave, resulting in a cascading transformation process on sub-nanosecond timescales: Si-I => Si-II => => Si-III/Si-XII. The phase transition Si-I => Si-II occurs at the front of the shock wave, while at the rear of the shock wave, a field of dynamic stresses arises in the material, allowing the phase transition Si-II => Si-III/Si-XII to occur. On sub-microsecond timescales, most of the new phases disappear as the material relaxes back to its original state.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
59

References

  1. 1. Mogni G., Higginbotham A., Gaál-Nagy K., Park N., Wark J.S. // Phys. Rev. B. 2014. V. 89. P. 064104. https://doi.org/10.1103/PhysRevB.89.064104
  2. 2. Wippermann S., He Y., Vörös M., Galli G. // Appl. Phys. Rev. 2016. V. 3. P. 040807. https://doi.org/10.1063/1.4961724
  3. 3. Hanfland M., Schwarz U., Syassen K., Takemura K. // Phys. Rev. Lett. 1999. V. 82. P. 1197. https://doi.org/10.1103/PhysRevLett.82.1197
  4. 4. McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
  5. 5. Мареев Е.И., Румянцев Б.В., Потемкин Ф.В. // Письма в ЖЭТФ. 2020. Т. 112. С. 780. https://doi.org/10.31857/s1234567820230111
  6. 6. Budnitzki M., Kuna M. // J. Mechan. Phys. Solids. 2016. V. 95. P. 64. https://doi.org/10.1016/j.jmps.2016.03.017
  7. 7. Chen H., Levitas V.I., Popov D., Velisavljevic N. // Nat. Commun. 2022. V. 13. P. 982. https://doi.org/10.1038/s41467-022-28604-1
  8. 8. Daisenberger D., Wilson M., McMillan P.F. et al. // Phys. Rev. B. 2007. V 75. P. 224118. https://doi.org/10.1103/PhysRevB.75.224118
  9. 9. Domnich V., Gogotsi Y. // Rev. Adv. Mater. Sci. 2002. V. 3. P. 1. https://www.ipme.ru/e-journals/RAMS/no_1302/domnich/domnich.pdf
  10. 10. Zeng Z., Zeng Q., Mao W.L., Qu S. // J. Appl. Phys. 2014. V. 115. P. 103514. https://doi.org/10.1063/1.4868156
  11. 11. Ovsyuk N.N., Lyapin S.G. // Appl. Phys. Lett. 2020. V. 116. P. 062103. https://doi.org/10.1063/1.5145246
  12. 12. Sundaram S.K., Mazur E. // Nat. Mater. 2002. V. 1. P. 217. https://doi.org/10.1038/nmat767
  13. 13. Vailionis A., Gamaly E.G., Mizeikis V. et al. // Nat. Commun. 2011. V. 2. P. 445. https://doi.org/10.1038/ncomms1449
  14. 14. Mareev E.I., Lvov K.V., Rumiantsev B.V. et al. // Laser Phys. Lett. 2019. V. 17. P. 015402. https://doi.org/10.1088/1612-202X/ab5d23
  15. 15. Butkus S. // J. Laser Micro/Nanoengineering. 2014. V 9. P. 213. https://doi.org/10.2961/jlmn.2014.03.0006
  16. 16. Gorman M.G., Briggs R., McBride E.E. et al. // Phys. Rev. Lett. 2015. V. 115. P. 095701. https://doi.org/10.1103/PhysRevLett.115.095701
  17. 17. Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
  18. 18. Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
  19. 19. Ковальчук М.В., Борисов М.М., Гарматина А.А. и др. // Кристаллография. 2022. Т. 67. № 5. С. 771. https://doi.org/10.31857/s0023476122050083
  20. 20. Moser R., Domke M., Winter J. et al. // Adv. Opt. Technol. 2018. V. 7. P. 255. https://doi.org/10.1515/aot-2018-0013
  21. 21. Mareev E., Obydennov N., Potemkin F. // Photonics. 2023. V. 10. P. 380. https://doi.org/10.3390/photonics10040380
  22. 22. Mareev E.I., Potemkin F.V. // Int. J. Mol. Sci. 2022. V. 23. P. 2115. https://doi.org/10.3390/ijms23042115
  23. 23. Норман Г.Э., Стариков С.В., Стегайлов В.В. // ЖЭТФ. 2012. Т. 141. С. 910. https://doi.org/10.1134/S1063776112040115
  24. 24. Greathouse J.A. Two-Temperature (TTM) Molecular Dynamics. Standia National LAborotory, NNSA.
  25. 25. Mareev E., Pushkin A., Migal E. et al. // Sci. Rep. 2022. V. 12. P. 7517. https://doi.org/10.1038/s41598-022-11501-4
  26. 26. Yang J., Zhang D., Wei J. et al. // Micromachines. 2022. V. 13. P. 1119. https://doi.org/10.3390/mi13071119
  27. 27. Taylor L.L., Scott R.E., Qiao J. // Opt. Mater. Express. 2018. V. 8. P. 648. https://doi.org/10.1364/ome.8.000648
  28. 28. Liu J., Wu M., Sun Z. et al. // Appl. Surf. Sci. 2024. V. 661. P. 160022. https://doi.org/10.1016/j.apsusc.2024.160022
  29. 29. An H., Wang J., Fang F., Jiang J. // Opt. Laser Technol. 2024. V. 171. P. 110427. https://doi.org/10.1016/j.optlastec.2023.110427
  30. 30. Plimpton S. // J. Comput. Phys. 1995. V. 117. P. 1. https://doi.org/10.1006/jcph.1995.1039
  31. 31. Pisarev V.V., Starikov S.V. // J. Phys.: Condens. Matter. 2014. V. 26. № 47. P. 475401. https://doi.org/10.1088/0953-8984/26/47/475401
  32. 32. Norman G.E., Starikov S.V., Stegailov V.V. et al. // Contrib. Plasma Phys. 2013. V. 2. P. 129. https://doi.org/10.1002/ctpp.201310025
  33. 33. Stukowski A. // Model. Simul. Mat. Sci. Eng. 2010. V. 18. № 1. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  34. 34. Coleman S.P., Spearot D.E., Capolungo L. // Model. Simul. Mat. Sci. Eng. 2013. V. 21. P. 055020. https://doi.org/10.1088/0965-0393/21/5/055020
  35. 35. Пашаев Э.М. Корчуганов В.Н., Субботин И.А. и др. // Кристаллография. 2021. Т. 66. С. 877. https://doi.org/10.31857/S0023476122050083
  36. 36. Gogotsi Y., Baek C., Kirscht F. // Semicond. Sci. Technol. 1999. V. 10. P. 936. https://doi.org/10.1088/0268-1242/14/10/310
  37. 37. Li H., Yu X., Zhu X. et al. // AIP Adv. 2021. V. 4. P. 045103. https://doi.org/10.1063/5.0034896
  38. 38. Bradby J.E., Williams J.S., Wong-Leung J. et al. // Appl. Phys. Lett. 2000. V. 23. P. 3749. https://doi.org/10.1063/1.1332110
  39. 39. Ikoma Y., Yamasaki T., Shimizu T. et al. // Mater. Characterization. 2020. V. 169. P. 110590. https://doi.org/10.1016/j.matchar.2020.110590
  40. 40. Xuan Y., Tan L., Cheng B. et al. // J. Phys. Chem. C. 2020. V. 124. P. 27089. https://doi.org/10.1021/acs.jpcc.0c07686
  41. 41. Cheng C. // Phys. Rev. B. 2003. V. 67. P. 134109. https://doi.org/10.1103/PhysRevB.67.134109
  42. 42. Anzellini S., Wharmby M.T., Miozzi F. et al. // Sci. Rep. 2019. V. 9. P. 15537. https://doi.org/10.1038/s41598-019-51931-1
  43. 43. Yin M.T. // Phys. Rev. B. 1984. V. 30. P. 1773. https://doi.org/10.1103/PhysRevB.30.1773
  44. 44. Piltz R.O., MacLean J.R., Clark S.J. et al. // Phys. Rev. B. 1995. V. 52. P. 4072. https://doi.org/10.1103/PhysRevB.52.4072
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library