1. Федоров Е.С. Сокращенный курс кристаллографии. СПб.: Экон. типо-литогр., 1910. 276 с.
2. Филатов С.К. // Докл. АН СССР. 1985. Т. 280. С. 369.
3. Volkov S.N., Charkin D.O., Firsova V.A. et al. // Crystallogr. Rev. 2023. V. 29. P. 151. https://doi.org/10.1080/0889311X.2023.2266400
4. Манолов К. Великие химики. Т. I. М.: Мир, 1977. 456 с.
5. Wyckoff R.W.G. // Z. Kristallogr. 1925. V. 62. P. 189. https://doi.org/10.1524/zkri.1925.62.1.189
6. Шубников А.В. // Кристаллография. 1956. Т. 1. С. 95.
7. Krishnan R.S., Srinivasan R., Devanarayanan S. Thermal Expansion of Crystals. Pergamon Press, 1979. 305 p.
8. Hazen R.M., Finger L.W. Comparative Crystal Chemistry. New York: J. Wiley and Sons, 1982. 231 p.
9. Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.
10. Filatov S.K., Hazen R.M. High-temperature and high-pressure crystal chemistry // Advanced Mineralogy. Berlin; New York: Springer-Verlag, 1994. V. 1. P. 76.
11. High-Temperature and High-Pressure Crystal Chemistry / Eds. Hazen R.M., Downs R.T. // Rev. Miner. Geochem. 2000. V. 41. Mineralogical Society of America, Washington DC, USA, 596 p.
12. Котельникова Е.Н., Филатов С.К. Кристаллохимия парафинов. СПб: Журнал Нева, 2002. 352 с.
13. Бубнова Р.С., Филатов С.К. Высокотемпературная кристаллохимия боратов и боросиликатов. СПб: Наука, Изд-во РАН, 2008. 760 с.
14. Лейбфрид Г. Микроскопическая теория механических и тепловых свойств кристаллов. М.; Л.: Физматгиз, 1963. 312 с.
15. Newnham R.E. Structure-property relations. Springer, 1975. 234 p.
16. Урусов В.С. Энергетическая кристаллохимия. М.: Наука, 1975. 336 с.
17. Филатов С.К. // Зап. Всесоюз. минерал. о-ва. 1987. Т. 116. С. 417.
18. Bubnova R.S., Filatov S.K. // Z. Kristallogr. Cryst. Mater. 2013. V. 228. P. 395. https://doi.org/10.1524/zkri.2013.1646
19. Bubnova R.S., Volkov S.N., Albert B., Filatov S.K. // Crystals. 2017. V. 7. P. 93. https://doi.org/10.3390/cryst7030093
20. Bubnova R., Yukhno V., Krzhizhanovskaya M. et al. // Crystals. 2024. V. 14. P. 600. https://doi.org/10.3390/cryst14070600
21. Kerstan M., Rüssel Ch. // J. Power Sources. 2011. V. 196. P. 7578. https://doi.org/10.1016/j.jpowsour.2011.04.035
22. Gorelova L.A., Bubnova R.S., Krivovichev S.V. et al. // J. Solid State Chem. 2016. V. 235. Р. 76. https://doi.org/10.1016/j.jssc.2015.12.012
23. Henderson C.M.B. // Solids. 2021. V. 2. P. 1. https://doi.org/10.3390/solids2010001
24. Krzhizhanovskaya M.G., Bubnova R.S., Filatov S.K. // J. Struct. Chem. 2014. V. 55. P. 1342. https://doi.org/10.1134/S0022476614070154
25. Krzhizhanovskaya M.G., Bubnova R.S., Filatov S.K. // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2019. V. 60. Р. 129. https://doi.org/10.13036/17533562.60.4.049
26. Filatov S.K., Frank-Kamenetzkij V.A. // Krist. Tech. 1967. V. 2. P. 577.
27. Филатов С.К., Франк-Каменецкий В.А. // Кристаллография. 1969. Т. 14. С. 804.
28. Герасимов В.Н., Доливо-Добровольская Е.М., Каменцев И.Е. и др. Руководство по рентгеновскому исследованию минералов. Л.: Недра, 1975. 399 с.
29. Бубнова Р.С., Кржижановская М.Г., Филатов С.К. Практическое руководство по терморентгенографии поликристаллов. Ч. I. Осуществление эксперимента и интерпретация результатов. СПб: Изд-во СПбГУ, 2011. 70 с.
30. Бубнова Р.С., Филатов С.К. Терморентгенография поликристаллов. Ч. II. Определение количественных характеристик тензора термического расширения. СПб: Изд-во СПбГУ, 2013. 143 с.
31. Филатов С.К., Кривовичев С.В., Бубнова Р.С. Общая кристаллохимия. СПб.: Изд-во СПбГУ, 2018. 276 с.
32. Филатов С.К., Кривовичев С.В., Бубнова Р.С. Систематическая кристаллохимия. СПб.: Изд-во СПбГУ, 2019. 231 с.
33. Филатов С.К. // Кристаллография. 2011. Т. 56. С. 1019.
34. Filatov S.K. // Int. Geol. Rev. 1988. V. 30. P. 496.
35. Filatov S.K. // Phys Status Solidi. B. 2008. V. 245. Р. 2490. https://doi.org/10.1002/pssb.200880256
36. Кривовичев С.В., Филатов С.К. Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: Изд-во СПбГУ, 2001. 200 с.
37. Krivovichev S.V., Mentré O., Siidra O.I. et al. // Chem. Rev. 2013. V. 113 (8). Р. 6459. https://doi.org/10.1021/cr3004696
38. Филатов С.К. // Успехи химии. 1992. Т. 61 (11). С. 1983. https://doi.org/10.1070/RC1992v061n11ABEH001018
39. Андрианова Л.В., Филатов С.К. // Аппаратура и методы рентгеновского анализа. Вып. 32. Л.: Машиностроение, 1984. С. 88.
40. Белоусов Р.И., Филатов С.К. // Физика и химия стекла. 2007. Т. 33. С. 377.
41. Фирсова В.А., Бубнова Р.С., Филатов С.К. Определение тензора термического расширения кристаллических веществ методом терморентгенографии – ThetaToTensor. Свидетельство о государственной регистрации программы для ЭВМ. RU 2011615363. 08.07.2011. Заявка № 2011613688 от 16.05.2011.
42. Фирсова В.А., Бубнова Р.С., Филатов С.К. Определение тензора термического расширения кристаллических веществ методом терморентгенографии – ThetaToTensor, вторая версия. Свидетельство о регистрации программы для ЭВМ RU 2013611071. 09.01.2013. Заявка № 2012661177 от 05.12.2012.
43. Bubnova R.S., Firsova V.A., Filatov S.K. // Glass Phys. Chem. 2013. V. 39. P. 347.
44. Фирсова В.А., Бубнова Р.С., Волков С.Н., Филатов С.К. Исследование термических преобразований кристаллической структуры по данным терморентгенографии – RietToTensor. Свидетельство о регистрации программы для ЭВМ RU 2015661205. 21.10.2015. Заявка № 2015616211 от 09.07.2015.
45. Фирсова В.А., Бубнова Р.С., Волков С.Н., Филатов С.К. Исследование термических преобразований кристаллической структуры по данным терморентгенографии – RietToTensor, вторая версия. Свидетельство о регистрации программы для ЭВМ RU 2018663287. 24.10.2018. Заявка № 2018615098 от 21.05.2018.
46. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. // Glass Phys. Chem. 2018. V. 44. P. 33. https://doi.org/10.1134/S1087659618010054
47. Фирсова В.А., Бубнова Р.С., Филатов С.К. Работа с базой данных тензора расширения – Tensorbase. Свидетельство о регистрации программы для ЭВМ RU 2020612656. 28.02.2020. Заявка № 2019663166 от 22.10.2019.
48. Либау Ф. Структурная химия силикатов / Пер. Пущаровского Д.Ю. М.: Мир, 1988. 412 с.
49. Пущаровский Д.Ю. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.
50. Hinrichsen B., Dinnebier R., Jansen M. // Z. Kristallogr. 2006. Suppl. V. 23. P. 231. https://doi.org/10.1524/9783486992526-040
51. Halasz I., Dinnebier R.E., Ross A. // J. Appl. Cryst. 2010. V. 43. P. 504.
52. Ежкова З.И., Жданов Г.С., Уманский М.М. // Кристаллография. 1959. Т. 4. Вып. 5. C. 723.
53. Jessen S.M., Küppers H. // J. Appl. Cryst. 1991. V. 24. P. 239. https://doi.org/10.1107/S0021889891000778
54. Paufler P., Weber Z. // Eur. J. Mineral. 1999. V. 11. P. 721. https://doi.org/10.1127/ejm/11/4/0721
55. Langreiter T., Kahlenberg V. // Crystals. 2015. V. 5. P. 143. https://doi.org/10.3390/cryst5010143
56. Huang C., Mutailipu M., Zhang F. et al. // Nat. Commun. 2021. V. 12. P. 2597. https://doi.org/10.1038/s41467-021-22835-4
57. Huppertz H., Eltz B. // J. Am. Chem. Soc. 2002. V. 124 (32). P. 9376. https://doi.org/10.1021/ja017691z
58. Huppertz H. // Z. Naturforsch. B. 2003. V. 58. P. 278.
59. Huppertz H., Keszler D.A. Borates: Solid‐State Chemistry // Encyclopedia of Inorganic and Bioinorganic Chemistry. 2014. https://doi.org/10.1002/9781119951438.eibc0021.pub2
60. Mutailipu M., Poeppelmeier K.R., Pan S. // Chem. Rev. 2021. V. 121. P. 1130. https://doi.org/10.1021/acs.chemrev.0c00796
61. Huppertz H., Ziegler R. Borate Applications. V. 2 From Energy Storage to Photofunctional Materials / Ed. Pöttgen R. et al. Berlin; Boston: De Gruyter, 2023. P. 153. https://doi.org/10.1515/9783110798890-011
62. Wright A.C. // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2010. V. 51. P. 1.
63. Херлбат К., Клейн К. Минералогия по системе Дэна. М.: Недра, 1982. 728 с.
64. Spahr D., König J., Bayarjargal L. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 2899. https://doi.org/10.1021/jacs.2c00351
65. Sagatova D.N., Gavryushkin P.N., Sagatov N.E., Banaev M.V. // J. Comput. Chem. V. 24. P. 23578. https://doi.org/10.1002/jcc.27210
66. Banaev M.V., Sagatov N.E., Sagatova D.N., Gavryushkin P.N. // ChemistrySelect. 2022. V. 7. P. 32. e202201940. https://doi.org/10.1002/slct.202201940
67. Koenig J., Spahr D., Bayarjargal L. et al. // ACS Earth Space Chem. 2022. V. 6. P. 73. https://doi.org/0.1021/acsearthspacechem.1c00284
68. Biryukov Y.P., Bubnova R.S., Krzhizhanovskaya M.G. et al. // Solid State Sci. 2020. V. 99. 106061. https://doi.org/10.1016/j.solidstatesciences.2019.106061
69. Volkov S.N., Filatov S.K., Bubnova R.S. et al. // Glass Phys. Chem. 2012. V. 38. P. 162. https://doi.org/10.1134/S108765961201018X
70. Filatov S.K., Biryukov Y.P., Bubnova R.S., Shablinskii A.P. // Acta Cryst. 2019. V. 75. P. 697. https://doi.org/10.1107/S2052520619007443
71. Biryukov Y.P., Zinnatullin A.L., Cherosov M.A. et al. // Acta Cryst. 2021. V. 77. P. 1021. https://doi.org/10.1107/S2052520621010866
72. Biryukov Y.P., Bubnova R.S., Krzhizhanovskaya M.G., Filatov S.K. // Mater. Chem. Phys. 2019. V. 229. P. 355. https://doi.org/10.1016/j.matchemphys.2019.02.047
73. Biryukov Y.P., Bubnova R.S., Filatov S.K., Ugolkov V.L. // Mater. Chem. Phys. 2018. V. 219. P. 233. https://doi.org/10.1016/j.matchemphys.2018.08.033
74. Shablinskii A.P., Bubnova R.S., Povolotskiy A., Filatov S.K. // Glass Phys. Chem. 2023. V. 49. P. 66. https://doi.org/10.1134/S1087659623600990
75. Volkov S., Bubnova R., Shorets O. et al. // Inorg. Chem. Commun. 2020. V. 122. P. 108262. https://doi.org/10.1016/j.inoche.2020.108262
76. Markgraf S.A., Reeder R.J. // Am. Mineral. 1985. V. 70. P. 590.
77. Wang M., Shi G., Qin J., Bai Q. // Eur. J. Mineral. 2018. V. 30. P. 939. https://doi.org/10.1127/ejm/2018/0030-2768
78. Ye Y., Smyth J.R., Boni P. // Am. Mineral. 2012. V. 97. P. 707. http://dx.doi.org/10.2138/am.2012.3923
79. Rao K.V.K., Naidu S.V., Murthy K.S. // J. Phys. Chem. Solids. 1968. V. 29. P. 245.
80. Murthy K.S., Rao K.V.K. // J. Mater Sci. 1976. V. 11. P. 2350. https://doi.org/10.1007/bf00752105
81. Srinivasan R. // Proc. Indian Acad. Sci. 1955. V. 41. P. 49. https://doi.org/10.1007/BF03047172
82. Bichile G.K., Kulkarni R.G. // Acta Cryst. A. 1975. V. 31. P. 446. https://doi.org/10.1107/S0567739475001003
83. Kopylova Yu.O., Krzhizhanovskaya M.G., Yukhno V.A., Bubova R.S. // Phys. Chem. Glass. 2025. V. 51. (in press).
84. Volkov S.N., Yukhno V.A., Bubnova R.S., Shilovskikh V.V. // Z. Krist. Cryst. Mater. 2018. V. 233. P. 379. https://doi.org/10.1515/zkri-2017-2112
85. Krzhizhanovskaya M.G., Vereshchagin O.S., Kopylova Yu.O. et al. // Opt. Mater. 2024. V. 147. P. 114651. https://doi.org/10.1016/j.optmat.2023.114651
86. Krzhizhanovskaya M.G., Kopylova Yu.O., Obozova E.D. et al. // J. Solid State Chem. 2023. V. 318. P. 123786. https://doi.org/10.1016/j.jssc.2022.123786
87. Merlini M., Gemmi M., Artioli G. // Phys. Chem. Miner. 2005. V. 32. P. 189. https://doi.org/10.1007/s00269-005-0458-7
88. Peters L., Knorr K., Knapp M., Depmeier W. // Phys. Chem. Miner. 2005. V. 32. P. 546. https://doi.org/10.1007/s00269-005-0015-4
89. Hovis G.L., Medford A., Conlon M. et al. // Am. Mineral. 2010. V. 95. P. 1060. https://doi.org/10.2138/am.2010.3484
90. Tribaudino M., Angel R.J., Cámara F. et al. // Contrib. Mineral. Petr. 2010. V. 160. P. 899. https://doi.org/10.1007/s00410-010-0513-3
91. Benna P., Bruno E. // Am. Mineral. 2001. V. 86. P. 690. https://doi.org/10.2138/am-2001-5-609
92. Benna P., Tribaudino M., Bruno E. // Am. Mineral. 1999. V. 84. P. 120. https://doi.org/10.2138/am-1999-1-213
93. Gorelova L., Britvin S., Krzhizhanovskaya M. et al. // Ceram. Int. 2024. V. 50. P. 54770. https://doi.org/10.1016/j.ceramint.2024.10.336
94. Hovis G.L., Crelling J., Wattles D. et al. // Mineral. Mag. 2003. V. 67. P. 535. https://doi.org/10.1180/0026461036730115
95. Palmer D.C., Dove M.T., Ibberson R.M., Powell B.M. // Am. Mineral. 1997. V. 82. P. 16. https://doi.org/10.2138/am-1997-1-203
96. Kerstan M., Müller M., Rüssel Ch. // Mater. Res. Bull. 2011. V. 46. P. 2456. https://doi.org/10.1016/j.materresbull.2011.08.031
97. Thieme Ch., Rüssel Ch. // J. Mater. Sci. 2015. V. 50. P. 5533. https://doi.org/10.1007/s10853-015-9100-3
98. Ridley M., Gaskins J., Hopkins P., Opila E. // Acta Mater. 2020. V. 195. P. 698. https://doi.org/10.1016/j.actamat.2020.06.012
99. Fukuda K., Asaka T., Uchida T. // J. Solid State Chem. 2012. V. 194. P. 157. https://doi.org/10.1016/j.jssc.2012.04.043
100. https://ntrs.nasa.gov/citations/20210009690
101. Stokes J.L., Harder B.J., Wiesner V.L., Wolfe D.E. // Solid State Chem. 2022. V. 312. 123166. https://doi.org/10.1016/j.jssc.2022.123166
102. Knittle E., Jeanloz R., Smith G.L. // Nature. 1986. V. 319. P. 214.
103. Redhammer G.J., Camara Fo, Alvaro M. et al. // Phys. Chem. Miner. 2010. V. 37. P. 685. https://doi.org/10.1007/s00269-010-0368-1
104. Augustsson B., Ekhed A. // Z. Naturforsch. A. 1968. V. 23. P. 1259. https://doi.org/10.1515/zna-1968-0903
105. Meilander B.E., Nilsson L. // Z. Naturforsch. A. 1983. V. 38. P. 1396. https://doi.org/10.1515/zna-1983-1218
106. Сапрыкина О.Ю., Бубнова Р.С., Филатов С.К. // Физика и химия стекла. 2018. Т. 44. № 6S. С. 95. https://doi.org/10.1134/S0132665118070156
107. Шаблинский А.П., Филатов С.К., Бирюков Я.П. и др. // Физика и химия стекла. 2023. Т. 49. С. 448. https://doi.org/10.31857/S0132665123600206
108. Siidra O.I., Lukina E.A., Nazarchuk E.V. et al. // Mineral. Mag. 2018. V. 82. P. 257. https://doi.org/10.1180/minmag.2017.081.037
109. Белоусова М.Г., Сапрыкина О.Ю., Бубнова Р.С. и др. // Вулканология и сейсмология. 2021. T. 1. C. 57. https://doi.org/10.31857/S0203030620060127
110. Shablinskii A., Bubnova R., Shorets O. et al. // Crystals. 2024. V. 14. 27. https://doi.org/10.3390/cryst14010027
111. Shablinskii A., Shorets O., Bubnova R. et al. // Crystals. 2024. V. 14 (12). 1074. https://doi.org/10.3390/cryst14121074
112. Shorets O.Yu., Filatov S.K., Krzhizhanovskaya M.G. et al. // Glass Phys. Chem. 2022. V. 48. P. 130.
113. Шорец О.Ю., Шаблинский А.П., Филатов С.К., Бубнова Р.С. // Сб. тез. 2-го Междунар. симп. “Химия для биологии, медицины, экологии и сельского хозяйства”. 2021. С. 161.
114. Schmitt M.K., Huppertz H., Janka O. et al. // Inorg. Chem. 2017. V. 56. Р. 4217. https://doi.org/10.1021/acs.inorgchem.7b00243
115. Volkov S., Charkin D., Bubnova R. et al. // Acta Cryst. 2019. V. 75. P. 910. https://doi.org/10.1107/S2053229619007605
116. Filatov S., Shepelev Y., Bubnova R. et al. // Solid State Chem. 2004. V. 177. P. 515. https://doi.org/10.1016/j.jssc.2003.03.003
117. Becker P., Bohaty´ L. // Cryst. Res. Technol. 2001. V. 36. P. 1175. https://doi.org/10.1002/1521-4079 (200111)36:11%3 C1175::AID-CRAT1175%3E3.0.CO;2-T
118. Mathews M.D., Tyagi A.K., Moorthy P.N. // Thermochim. Acta. 1998. V. 319. P. 113. https://doi.org/10.1016/S0040-6031 (98)00408-0
119. Lin Wei, Dai Guiqing, Huang Qingzhen et al. // J. Phys. D. Appl. Phys. 1990. V. 23. P. 1073. https://doi.org/10.1088/0022-3727/23/8/012
120. Huntelaar M.E., Cordfunke E.H.P. // J. Nucl. Mater. 1993. V. 201. P. 250.
121. Каплун А.Б., Мешалкин А.Б. // Журн. неорган. химии. 2001. Т. 46. С. 1006.
122. Bubnova R.S., Krzhizhanovskaya M.G., Polyakova I.G., Filatov S.K. // Cryst. Res. Technol. 2005. V. 40. P. 73. https://doi.org/10.1002/crat.200410309
123. Penin N., Touboul M., Nowogrocki G. // J. Cryst. Growth. 2003. V. 256. P. 334. https://doi.org/10.1016/S0022-0248 (03)01383-6
Комментарии
Сообщения не найдены