RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Thermal evolution and crystal structure features of Cs2SO4 and Cs2Ca3(SO4)4 sulfates

PII
S0023476125030033-1
DOI
10.31857/S0023476125030033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
372-382
Abstract
For the first time, the thermal expansion of two modifications of α- and β-Cs2SO4, as well as the compound Cs2Ca3(SO4)4, was studied by the high-temperature powder X-ray diffraction method in the temperature ranges of 25–960 and 25–540°C, respectively. β-Cs2SO4 transforms into the high-temperature α-Cs2(SO4) modification through a two-phase region – in the range of 600–750°C. The thermal expansion of all the studied phases is sharply anisotropic: αa = 37.3(10), αb = 36.2(4), αc = 12(5), αV = 85.1(5) at 30°C for β-Cs2SO4; αa = 55(5), αc = 115(9), αV = 224(12) ∙ 10–6 °С–1 at 750°С for α-Cs2SO4. The thermal expansion coefficients for Cs2Ca3(SO4)4 are: α11 = 18.8(5), αb = 18.2(5), α33 = –7.5(2), αβ = –10.6(2), αV = 29.6(9) ∙ 10–6 °С–1 at 25°С. The inheritance of the polymorphic transformation of Cs2SO4 is shown, consisting in the fact that with an increase in temperature, the corrugated columns or rods elongated along the c axis in both modifications, consisting of Cs(SO4)6 microblocks, straighten due to the rotation of SO4 tetrahedra. The interpretation of the anisotropy of the thermal expansion of Cs2Ca3(SO4)4 is based on the mechanism of rocking polyhedra, a hinge deformation at the level of Ca(SO4)6 microblocks is revealed, leading to a large negative thermal expansion in the α33 direction.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Wu C., Wu T.H., Jiang X.X. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4138. https://doi.org/10.1021/jacs.1c00416
  2. 2. Yang F., Huang L., Zhao X. et al. // J. Mater. Chem. C. 2019. V. 7. P. 8131. https://doi.org/10.1039/C9TC02180A
  3. 3. Dong X., Huang L., Hu C. et al. // Angew. Chem. 2019. V. 131. P. 6598. https://doi.org/10.1002/ange.201900637
  4. 4. Chen K.C., Yang Y., Peng G. et al. // J. Mater. Chem. C. 2019. V. 7. P. 9900. https://doi.org/10.1039/C9TC03105G
  5. 5. Li Y., Liang F., Zhao S. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 3833. https://doi.org/10.1021/jacs.9b00138
  6. 6. Tang H.X., Zhang Y.X., Zhuo C. et al. // Angew. Chem. 2019. V. 58. P. 3824. https://doi.org/10.1002/anie.201813122
  7. 7. Mary T.A., Evans J.S.O., Vogt T. et al. // Science. 1996. V. 272. P. 90. https://doi.org/10.1126/science.272.5258.90
  8. 8. Takenaka K. // Front. Chem. 2018. V. 6. P. 267. https://doi.org/10.3389/fchem.2018.00267
  9. 9. Dang P., Yun X., Zhang Q. et al. // Light Sci. Appl. 2021. V. 10. P. 29. https://doi.org/10.1038/s41377-021-00469-x
  10. 10. Wang M., Wei M., Liang L. et al. // Inorg. Chem. Commun. 2019. V. 107. 107486.
  11. 11. Fang P., Tang W., Shen Y. et al. // Crystals. 2022. V. 12. 126. https://doi.org/10.3390/cryst12020126
  12. 12. Ogg A. // Philos. Mag. 1928. V. 5. P. 354. https://doi.org/10.1080/14786440208564474
  13. 13. Taylor W., Boyer T. // Mem. Proc. Manchester. 1928. V. 72. P. 125.
  14. 14. Nord A.G. // Acta Chem. Scan. B. 1976. V. 30. P. 198. https://doi.org/10.3891/acta.chem.scand.30a-0198
  15. 15. Weber H.J., Schulz M., Schmitz S. et al. // J. Phys.: Condens. Matter. 1989. V. 1. P. 8543. https://doi.org/10.1088/0953-8984/1/44/025
  16. 16. Tutton A.E. // Philos. Trans. Royal Soc. A. 1899. V. 192. P. 350. https://doi.org/10.1098/rspl.1898.0112
  17. 17. Haussuhl V.S. // Acta Cryst. 1965. V. 18. P. 839.
  18. 18. Плющев В.Е. // Журн. неорган. химии. 1962. Т. 66. С. 1377.
  19. 19. Levin E.M., Benedict J.T., Sciarello J.P. et al. // J. Am. Ceram. Soc. 1973. V. 56. № 8. P. 427.
  20. 20. Fischmeister H.F. // Monatsh. Chem. 1962. V. 93. P. 420. https://doi.org/10.1007/BF00903139
  21. 21. Sasaki A., Akihiro H., Hisashi K. et al. // Rigaku J. 2010. V. 26. Р. 10.
  22. 22. Бубнова Р.С., Фирсова В.А., Волков С.Н. и др. // Физика и химия стекла. 2018. Т. 44. № 1. С. 48.
  23. 23. Naruse H., Tanaka K., Morikawa H. et al. // Acta Cryst. В. 1987. V. 43. P. 143. https://doi.org/10.1107/S010876818709815X
  24. 24. Arnold H., Kurtz W., Richter-Zinnius A. et al. // Acta Cryst. B. 1981. V. 37. P. 1643. https://doi.org/10.1107/S0567740881006808
  25. 25. Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
  26. 26. Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.
  27. 27. Shablinskii A.P., Filatov S.K., Biryukov Y.P. // Phys. Chem. Miner. 2023. V. 50. P. 30. https://doi.org/10.1007/s00269-023-01253-6
  28. 28. Филатов С.К. // Зап. Всесоюз. минерал. о-ва. 1982. Т. 111. № 4. С. 674.
  29. 29. Filatov S.K., Andrianova L.V., Bubnova R.S. // Cryst. Res. Technol. 1984. V. 19. № 4. P. 563. https://doi.org/10.1002/crat.2170190421
  30. 30. Sleight A.W. // Inorg. Chem. 1998. V. 37. № 12. Р. 2854. https://doi.org/10.1021/ic980253h
  31. 31. Sleight A.W. // Endeavour. 1995. V. 19. № 2. P. 64. https://doi.org/10.1016/0160-9327 (95)93586-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library