ОФНКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Термическая эволюция и особенности кристаллического строения сульфатов Cs2SO4 и Cs2Ca3(SO4)4

Код статьи
S0023476125030033-1
DOI
10.31857/S0023476125030033
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 3
Страницы
372-382
Аннотация
Впервые изучено термическое расширение двух модификаций α- и β-Cs2SO4, а также соединения Cs2Ca3(SO4)4 методом порошковой терморентгенографии в температурных интервалах 25–960 и 25–540°С соответственно. Модификация β-Cs2SO4 переходит в высокотемпературную модификацию α-Cs2(SO4) через двухфазную область в интервале 600–750°С. Термическое расширение всех изученных фаз сильно анизотропно: αa = 37.3(10), αb = 36.2(4), αc = 12(5), αV = 85.1(5) при 30°С для β-Cs2SO4; αa = 55(5), αc = 115(9), αV = 224(12) × 10–6 °С–1 при 750°С для α-Cs2SO4. Коэффициенты термического расширения для Cs2Ca3(SO4)4 составляют: α11 = 18.8(5), αb = 18.2(5), α33 = –7.5(2), αβ = –10.6(2), αV = 29.6(9) × 10–6 °С–1 при 25°С. Показана преемственность полиморфного превращения Cs2SO4, заключающаяся в том, что с повышением температуры в обеих модификациях гофрированные колонны, или стержни, вытянутые вдоль оси c, состоят из микроблоков Cs(SO4)6 и распрямляются за счет вращения тетраэдров SO4. Трактовка анизотропии термического расширения Cs2Ca3(SO4)4 основана на механизме покачивающихся полиэдров, выявлена шарнирная деформация на уровне микроблоков Ca(SO4)6, приводящая к большому отрицательному термическому расширению в направлении α33.
Ключевые слова
Дата публикации
14.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Wu C., Wu T.H., Jiang X.X. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 4138. https://doi.org/10.1021/jacs.1c00416
  2. 2. Yang F., Huang L., Zhao X. et al. // J. Mater. Chem. C. 2019. V. 7. P. 8131. https://doi.org/10.1039/C9TC02180A
  3. 3. Dong X., Huang L., Hu C. et al. // Angew. Chem. 2019. V. 131. P. 6598. https://doi.org/10.1002/ange.201900637
  4. 4. Chen K.C., Yang Y., Peng G. et al. // J. Mater. Chem. C. 2019. V. 7. P. 9900. https://doi.org/10.1039/C9TC03105G
  5. 5. Li Y., Liang F., Zhao S. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 3833. https://doi.org/10.1021/jacs.9b00138
  6. 6. Tang H.X., Zhang Y.X., Zhuo C. et al. // Angew. Chem. 2019. V. 58. P. 3824. https://doi.org/10.1002/anie.201813122
  7. 7. Mary T.A., Evans J.S.O., Vogt T. et al. // Science. 1996. V. 272. P. 90. https://doi.org/10.1126/science.272.5258.90
  8. 8. Takenaka K. // Front. Chem. 2018. V. 6. P. 267. https://doi.org/10.3389/fchem.2018.00267
  9. 9. Dang P., Yun X., Zhang Q. et al. // Light Sci. Appl. 2021. V. 10. P. 29. https://doi.org/10.1038/s41377-021-00469-x
  10. 10. Wang M., Wei M., Liang L. et al. // Inorg. Chem. Commun. 2019. V. 107. 107486.
  11. 11. Fang P., Tang W., Shen Y. et al. // Crystals. 2022. V. 12. 126. https://doi.org/10.3390/cryst12020126
  12. 12. Ogg A. // Philos. Mag. 1928. V. 5. P. 354. https://doi.org/10.1080/14786440208564474
  13. 13. Taylor W., Boyer T. // Mem. Proc. Manchester. 1928. V. 72. P. 125.
  14. 14. Nord A.G. // Acta Chem. Scan. B. 1976. V. 30. P. 198. https://doi.org/10.3891/acta.chem.scand.30a-0198
  15. 15. Weber H.J., Schulz M., Schmitz S. et al. // J. Phys.: Condens. Matter. 1989. V. 1. P. 8543. https://doi.org/10.1088/0953-8984/1/44/025
  16. 16. Tutton A.E. // Philos. Trans. Royal Soc. A. 1899. V. 192. P. 350. https://doi.org/10.1098/rspl.1898.0112
  17. 17. Haussuhl V.S. // Acta Cryst. 1965. V. 18. P. 839.
  18. 18. Плющев В.Е. // Журн. неорган. химии. 1962. Т. 66. С. 1377.
  19. 19. Levin E.M., Benedict J.T., Sciarello J.P. et al. // J. Am. Ceram. Soc. 1973. V. 56. № 8. P. 427.
  20. 20. Fischmeister H.F. // Monatsh. Chem. 1962. V. 93. P. 420. https://doi.org/10.1007/BF00903139
  21. 21. Sasaki A., Akihiro H., Hisashi K. et al. // Rigaku J. 2010. V. 26. Р. 10.
  22. 22. Бубнова Р.С., Фирсова В.А., Волков С.Н. и др. // Физика и химия стекла. 2018. Т. 44. № 1. С. 48.
  23. 23. Naruse H., Tanaka K., Morikawa H. et al. // Acta Cryst. В. 1987. V. 43. P. 143. https://doi.org/10.1107/S010876818709815X
  24. 24. Arnold H., Kurtz W., Richter-Zinnius A. et al. // Acta Cryst. B. 1981. V. 37. P. 1643. https://doi.org/10.1107/S0567740881006808
  25. 25. Воронков А.А., Илюхин В.В., Белов Н.В. // Кристаллография. 1975. Т. 20. Вып. 3. С. 556.
  26. 26. Филатов С.К. Высокотемпературная кристаллохимия. Л.: Недра, 1990. 288 с.
  27. 27. Shablinskii A.P., Filatov S.K., Biryukov Y.P. // Phys. Chem. Miner. 2023. V. 50. P. 30. https://doi.org/10.1007/s00269-023-01253-6
  28. 28. Филатов С.К. // Зап. Всесоюз. минерал. о-ва. 1982. Т. 111. № 4. С. 674.
  29. 29. Filatov S.K., Andrianova L.V., Bubnova R.S. // Cryst. Res. Technol. 1984. V. 19. № 4. P. 563. https://doi.org/10.1002/crat.2170190421
  30. 30. Sleight A.W. // Inorg. Chem. 1998. V. 37. № 12. Р. 2854. https://doi.org/10.1021/ic980253h
  31. 31. Sleight A.W. // Endeavour. 1995. V. 19. № 2. P. 64. https://doi.org/10.1016/0160-9327 (95)93586-4
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека