RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Double borates of the BaO–Lu2O3–B2O3 system: crystal chemistry, thermal and optical properties

PII
S0023476125030045-1
DOI
10.31857/S0023476125030045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
383-390
Abstract
The paper presents data on synthesis of double borates crystallizing in the BaO–Lu2O3–B2O3 system and Eu3+-activated phosphors based on them as well as on finding of correlations between its chemical composition, crystal structure, thermal and optical properties. Based on results of the investigation of all currently known double Ba–Lu borates, it is shown that search for novel compounds in the system as well as development of optical materials based on them is a promising direction in a field of creating new functional materials for LED applications.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Khamaganova T.N. // Russ. Chem. Bull. 2017. V. 66. P. 187. https://doi.org/10.1007/s11172-017-1719-6
  2. 2. Mutailipu M., Poeppelmeier K.R., Pan S. // Chem. Rev. 2020. V. 121. P. 1130. https://doi.org/10.1021/acs.chemrev.0c00796
  3. 3. Илюхин А.Б., Джуринский Б.Ф. // Журн. неорган. химии. 1993. Т. 38. С. 1625.
  4. 4. Cox J.R., Keszler D.A., Huang J. // Chem. Mater. 1994. V. 6. P. 2008. https://doi.org/10.1021/cm00047a021
  5. 5. Wang D.-Y., Chen T.-M., Cheng B.-M. // Inorg. Chem. 2012. V. 51. P. 2961. https://doi.org/10.1021/ic202241h
  6. 6. Han B., Zhang J., Wang Z., Liu Y. // Оптика и спектроскопия. 2014. Т. 117. С. 70. https://doi.org/10.7868/S0030403414070034
  7. 7. Tang Z., Du F., Liu H. et al. // Adv. Opt. Mater. 2022. V. 10. P. 2102204. https://doi.org/10.1002/adom.202102204
  8. 8. Zhao Y., Zheng Z., Li Z. et al. // Inorg. Chem. 2024. V. 63. P. 4288. https://doi.org/10.1021/acs.inorgchem.3c04454
  9. 9. Duan C., Yuan J., Yang X. et al. // J. Phys. D. 2005. V. 38. P. 3576. https://doi.org/10.1088/0022-3727/38/19/005
  10. 10. Duan C.-J., Wang X.-J., Zhao J.-T. // J. Appl. Phys. 2007. V. 101. 023501. https://doi.org/10.1063/1.2409284
  11. 11. Duan C.-J., Li W.-F., Yuan J.-L., Zhao J.-T. // J. Alloys Compd. 2008. V. 458. P. 536. https://doi.org/10.1016/j.jallcom.2007.04.127
  12. 12. Biryukov Y.P., Bubnova R.S., Povolotskiy A.V., Filatov S.K. // Сeram. Int. 2024. V. 50. P. 3491. https://doi.org/10.1016/j.ceramint.2023.11.097
  13. 13. Biryukov Y.P., Bubnova R.S., Krzhizhanovskaya M.G., Filatov S.K. // Mater. Chem. Phys. 2019. V. 229. P. 355. https://doi.org/10.1016/j.matchemphys.2019.02.047
  14. 14. Huang X., Guo H., Sun L. et al. // J. Alloys Compd. 2019. V. 787. P. 865. https://doi.org/10.1016/j.jallcom.2019.02.095
  15. 15. Kolesnikov I.E., Bubnova R.S., Povolotskiy A.V. et al. // Сeram. Int. 2021. V. 47. P. 8030. https://doi.org/10.1016/j.ceramint.2020.11.156
  16. 16. Sun Z., Zhu Z., Guo Z. et al. // Сeram. Int. 2019. V. 45. P. 7143. https://doi.org/10.1016/j.ceramint.2018.12.220
  17. 17. Wang S., Wu H., Fan Y. et al. // Chem. Eng. J. 2022. V. 432. P. 134265. https://doi.org/10.1016/j.cej.2021.134265
  18. 18. Zhang X., Zhang Z.-Q., Feng Y. et al. // J. Mol. Struct. 2023. V. 1294. P. 136523. https://doi.org/10.1016/j.molstruc.2023.136523
  19. 19. Filatov S.K., Biryukov Y.P., Bubnova R.S., Shablinskii A.P. // Acta Cryst. B. 2019. V. 75. P. 697. https://doi.org/10.1107/S2052520619007443
  20. 20. Bubnova R.S., Povolotskiy A.V., Biryukov Y.P. et al. // Сeram. Int. 2022. V. 48. P. 15966. https://doi.org/10.1016/j.ceramint.2022.02.139
  21. 21. Ma C., Chen H., Luo M. et al. // Dalton Trans. 2024. V. 53. P. 14153. https://doi.org/10.1039/D4DT01843E
  22. 22. Biryukov Y.P., Bubnova R.S., Shablinskii A.P. et al. // Inorg. Chem. Commun. 2025. V. 172. P. 113717. https://doi.org/10.1016/j.inoche.2024.113717
  23. 23. Xiao Y., Hao Z., Zhang L. et al. // J. Mater. Chem. C. 2018. V. 6. P. 5984. https://doi.org/10.1039/C7TC05614A
  24. 24. Xiao Y., Hao Z., Zhang L. et al. // Dyes and Pigments. 2018. P. 121. https://doi.org/10.1016/j.dyepig.2018.02.036
  25. 25. Annadurai G., Devakumar B., Guo H. et al. // RSC Adv. 2018. V. 8. P. 30396. https://doi.org/10.1039/C8RA06457A
  26. 26. Бубнова Р.С., Фирсова В.А., Волков С.Н., Филатов С.К. // Физика и химия стекла. 2018. Т. 44. С. 33. https://doi.org/10.1134/S1087659618010054
  27. 27. Biryukov Y.P., Bubnova R.S., Filatov S.K., Ugolkov V.L. // Mater. Chem. Phys. 2018. V. 219. P. 233. https://doi.org/10.1016/j.matchemphys.2018.08.033
  28. 28. Бирюков Я.П., Бубнова Р.С. // Физика и химия стекла. 2023. Т. 49. С. 432. https://doi.org/10.31857/S0132665123600048
  29. 29. Hermus M., Phan P.-C., Brgoch J. // Chem. Mater. 2016. V. 28. P. 1121. https://doi.org/10.1021/acs.chemmater.5b04542
  30. 30. Bubnova R.S., Filatov S.K. // Z. Kristallogr. Cryst. Mater. 2013. V. 228. P. 395 https://doi.org/10.1524/zkri.2013.1646/html
  31. 31. Филатов С.К. // Кристаллография. 2011. Т. 56. С. 1019.
  32. 32. Alekseeva O.A., Smirnova E.S., Frolov K.V. et al. // Crystals. 2022. V. 12. P. 1203. https://doi.org/10.3390/cryst12091203
  33. 33. Li B., Annadurai G., Liang J. et al. // RSC Adv. 2018. V. 8. P. 33710. https://doi.org/10.1039/C8RA07166G
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library