RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Phaseformation in triple systems phosphates Sr–M2+Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+)

PII
S0023476125030087-1
DOI
10.31857/S0023476125030087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
418-427
Abstract
The phase formation in a system of triple phosphates Sr–M2+–Ln3+ (M2+ = Zn2+, Mg2+, Mn2+; Ln3+ = Eu3+, Tb3+) has been investigated. The crystallization of strontiowhitlockite like structure and isomorphism in a series Sr9–xMnxTb(PO4)7, Sr9–xMgxEu(PO4)7 and Sr9–xZnxEu(PO4)7 (0 ≤ x ≤ 1.0) was described. The species were synthesized through solid-state reaction. It was shown that unlimited series of solid solutions can not be formed. The formation of a strontiowhitlockite-like structure was observed for only stoichiometric compositions Sr8MgEu(PO4)7 and Sr8ZnEu(PO4)7. Crystal chemical aspects of the formation of the strontiowhitlockite structure in the series were analysed. Samples with the strontiowhitlockite structure are crystallized in centrosymmetric space group (sp. gr. R3m) compared to a mother structure, mineral whitlockite, and its synthetic modifications based on calcium phosphate. The conditions for the formation of phosphates with the structure of stronciowhitlockite are indicated. The photoluminescence properties were described, and it was shown that samples exhibit intense emission in the red-orange region, due to the presence of Eu3+ ions. A quenching effect in Sr9–xMnxTb(PO4)7 was detected.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Zhang Z.-W., Wu Y.-N., Shen X.-H. et al. // Opt. Laser Technol. 2014. V. 62. P. 63. https://doi.org/10.1016/j.optlastec.2014.02.014
  2. 2. Zhu D., Liao M., Mu Z., Wu F. // J. Electron. Mater. 2018. V. 47. № 8. P. 4840. https://doi.org/10.1007/s11664-018-6380-9
  3. 3. Deyneko D.V., Aksenov S.M., Nikiforov I.V. et al. // Cryst. Growth Des. 2020. V. 20. № 10. P. 6461. https://doi.org/10.1021/acs.cgd.0c00637
  4. 4. Никифоров И.В., Дейнеко Д.В., Спасский Д.А., Лазоряк Б.И. // Неорган. материалы. 2019. Т. 55. № 8. С. 859. https://doi.org/10.1134/s0002337x19070121
  5. 5. Nord A.G. // Monatshefte. 1983. V. 11. P. 489.
  6. 6. Judd B.R. // J. Chem. Phys. 1966. V. 44. № 2. P. 839. https://doi.org/10.1063/1.1726774
  7. 7. Britvin S.N., Pakhomovskii Y.A., Bogdanova A.N., Skiba V.I. // Can. Mineral. 1991. V. 29. № 1. P. 87.
  8. 8. Atencio D., Azzi A.d.A. // Mineralog. Mag. 2020. V. 84. № 6. P. 928. https://doi.org/10.1180/mgm.2020.86
  9. 9. Szyszka K., Nowak N., Kowalski R.M. et al. // J. Mater. Chem. C. 2022. V. 10. № 23. P. 9092. https://doi.org/10.1039/D2TC00891B
  10. 10. Chen J., Liang Y., Zhu Y. et al. // J. Lumin. 2019. V. 214. P. 116569. https://doi.org/10.1016/j.jlumin.2019.116569
  11. 11. Jiang Y., Liu W., Cao X. et al. // J. Rare Earths. 2017. V. 35. № 2. P. 142. https://doi.org/10.1016/S1002-0721 (17)60892-5
  12. 12. Leng Z., Li L., Che X., Li G. // Mater. Des. 2017. V. 118. P. 245. https://doi.org/10.1016/j.matdes.2017.01.038
  13. 13. Dai S., Zhang W., Zhou D. et al. // Ceram. Int. 2017. V. 43. № 17. P. 15493. https://doi.org/10.1016/j.ceramint.2017.08.097
  14. 14. Cheng L., Zhang W., Li Y. et al. // Ceram. Int. 2017. V. 43. № 14. P. 11244. https://doi.org/10.1016/j.ceramint.2017.05.174
  15. 15. Sarver J.F., Hoffman M.V., Hummel F.A. // J. Electrochem. Soc. 1961. V. 108. № 12. P. 1103. https://doi.org/10.1149/1.2427964
  16. 16. Sun W., Li H., Li B. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 10. P. 9421. https://doi.org/10.1007/s10854-019-01272-6
  17. 17. Huang C.H., Chiu Y.C., Yeh Y.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6661. https://doi.org/10.1021/am302014e
  18. 18. Luo J., Zhou W., Fan J. et al. // J. Lumin. 2021. V. 239. P. 118369. https://doi.org/10.1016/j.jlumin.2021.118369
  19. 19. Zhou J., Chen M., Ding J. et al. // Ceram. Int. 2021. V. 47. № 22. P. 31940. https://doi.org/10.1016/j.ceramint.2021.08.080
  20. 20. Tang W., Xue H. // RSC Adv. 2014. V. 4. № 107. P. 62230. https://doi.org/10.1039/C4RA10274F
  21. 21. Zhou W., Fan J., Luo J. et al. // Mater. Today Chem. 2023. V. 27. P. 101263. https://doi.org/10.1016/j.mtchem.2022.101263
  22. 22. Chi F., Dai W., Jiang B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 27. P. 15632. https://doi.org/10.1039/D0CP02544E
  23. 23. Ding X., Wang Y. // Acta Mater. 2016. V. 120. P. 281. https://doi.org/10.1016/j.actamat.2016.08.070
  24. 24. Ma X., Sun S., Ma J. // Mater. Res. Express. 2019. V. 6. № 11. P. 116207. https://doi.org/10.1088/2053-1591/ab47c6
  25. 25. Yu Q., Wang L., Huang P. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. № 1. P. 196. https://doi.org/10.1007/s10854-018-0501-3
  26. 26. Kim D., Seo Y.W., Park S.H. et al. // Mater. Res. Bull. 2020. V. 127. P. 110856. https://doi.org/10.1016/j.materresbull.2020.110856
  27. 27. Belik A.A., Lazoryak B.I., Pokholok K.V. et al. // J. Solid State Chem. 2001. V. 162. № 1. P. 113. https://doi.org/10.1006/jssc.2001.9363
  28. 28. Gallyamov E.M., Titkov V.V., Lebedev V.N. et al. // Materials. 2023. V. 16. № 12. P. 4392. https://doi.org/10.3390/ma16124392
  29. 29. Mosafer H.S.R., Paszkowicz W., Minikayev R. et al. // Crystals. 2023. V. 13. № 5. P. 853. https://doi.org/10.3390/cryst13050853
  30. 30. Xie G., Wu M., Li T. et al. // Phys. Status Solidi. B. 2022. V. 259. № 11. P. 2200259. https://doi.org/10.1002/pssb.202200259
  31. 31. Helode S.J., Kadam A.R., Dhoble S.J. // J. Solid State Chem. 2023. V. 325. P. 124149. https://doi.org/10.1016/j.jssc.2023.124149
  32. 32. Zhou J., Chen M., Zhang J. et al.// Chem. Eng. J. 2021. V. 426. P. 131869. https://doi.org/10.1016/j.cej.2021.131869
  33. 33. Zhang C., Yao C. // Ceram. Int. 2021. V. 47. № 24. P. 34721. https://doi.org/10.1016/j.ceramint.2021.09.011
  34. 34. Никифоров И.В., Дейнеко Д.В., Дускаев И.Ф. // ФТТ. 2020. Т. 62. Вып. 5. С. 766. https://doi.org/10.21883/FTT.2020.05.49243.19M
  35. 35. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // CrystEngComm. 2019. V. 21. № 35. P. 5235. https://doi.org/10.1039/C9CE00931K
  36. 36. Deyneko D.V., Morozov V.A., Vasin A.A. et al. // J. Lumin. 2020. V. 223. P. 117196. https://doi.org/10.1016/j.jlumin.2020.117196
  37. 37. Nikiforov I.V., Spassky D.A., Krutyak N.R. et al. // Molecules. 2024. V. 29. № 1. P. 124. https://doi.org/10.3390/molecules29010124
  38. 38. Deyneko D.V., Nikiforov I.V., Spassky D.A. et al. // J. Alloys Compd. 2021. V. 887. P. 161340. https://doi.org/10.1016/j.jallcom.2021.161340
  39. 39. Belik A.A., Izumi F., Ikeda T. et al. // Phosphorus, Sulfur, and Silicon and the Related Elements. 2002. V. 177. № 6–7. P. 1899. https://doi.org/10.1080/10426500212245
  40. 40. Bessière A., Benhamou R.A., Wallez G. et al. // Acta Mater. 2012. V. 60. № 19. P. 6641. https://doi.org/10.1016/j.actamat.2012.08.034
  41. 41. Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. http://dx.doi.org/10.1016/j.apsusc.2015.12.159
  42. 42. Langell M.A., Hutchings C.W., Carson G.A., Nassir M.H. // J. Vac. Sci. Technol. A. 1996. V. 14. № 3. P. 1656. https://doi.org/10.1116/1.580314
  43. 43. Soares E.A., Paniago R., de Carvalho V.E. et al. // Phys. Rev. B. 2006. V. 73. № 3. P. 035419. https://doi.org/10.1103/PhysRevB.73.035419
  44. 44. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 39. https://doi.org/10.1116/1.1247889
  45. 45. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. № 1. P. 31. https://doi.org/10.1116/1.1247888
  46. 46. Никифоров И.В., Титков В.В., Аксенов С.М. и др. // Журн. структур. химии. 2024. Т. 65. № 8. С. 131548. https://doi.org/10.26902/jsc\_id131548
  47. 47. Dickens B., Schroeder L.W., Brown W.E. // J. Solid State Chem. 1974. V. 10. № 3. P. 232. https://doi.org/10.1016/0022-4596 (74)90030-9
  48. 48. Gopal R., Calvo C., Ito J., Sabine W.K. // Can. J. Chem. 1974. V. 52. № 7. P. 1155. https://doi.org/10.1139/v74-181
  49. 49. Batool S., Liaqat U., Babar B., Hussain Z. // J. Korean Ceram. Soc. 2021. V. 58. № 5. P. 530. https://doi.org/10.1007/s43207-021-00120-w
  50. 50. Deyneko D.V., Spassky D.A., Antropov A.V. et al. // Mater. Res. Bull. 2023. V. 165. P. 112296. https://doi.org/10.1016/j.materresbull.2023.112296
  51. 51. Shannon R. // Acta Cryst. A. 1976. V. 32. P. 751. https://doi.org/10.1107/s0567739476001551
  52. 52. Han Y.-j., Wang S., Liu H. et al. // J. Alloys Compd. 2020. V. 844. P. 156070. https://doi.org/10.1016/j.jallcom.2020.156070
  53. 53. Lakshminarayana G., Buddhudu S. // Mater. Chem. Phys. 2007. V. 102. № 2. P. 181. https://doi.org/10.1016/j.matchemphys.2006.11.020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library