- Код статьи
- S0023476125030121-1
- DOI
- 10.31857/S0023476125030121
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 3
- Страницы
- 457-464
- Аннотация
- Монокристаллы двух новых сложных гидроселенитов с органическими катионами – (C4H12N2)[Mn(HSeO3)2Cl2] (1) и [(C4N12N2)Br]2[Mn(HSeO3)2Br2] (2) – выделены из продуктов реакции пиперазина, селенистой кислоты и галогенида марганца в водной среде. Кристаллические структуры 1 и 2 определены методом монокристального рентгеноструктурного анализа и характеризуются моноклинной сингонией (1: P21/c, a = 9.7557(7), b = 7.3930(5), c = 9.7660(6) Å, β = 116.839(7)°; 2: P21/c, a = 14.4093(3), b = 7.3822(1), c = 10.3051(3) Å, β = 101.553(2)°). Кристаллические структуры обоих соединений состоят из чередующихся слоев состава [Mn(HSeO3)2X2]2– (X = Cl, Br) и слоев, образованных катионами пиперазиния. Соединение 1 является структурным аналогом описанного ранее соединения (C4H12N2)[Cd(HSeO3)2Cl2]. Кристаллическая структура соединения 2 относится к новому структурному типу, характеризуется модулярным строением и содержит слои, включающие в себя как катионы пиперазиния, так и анионы брома.
- Ключевые слова
- Дата публикации
- 15.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 10
Библиография
- 1. Ok K.M. // Acc. Chem. Res. 2016. V. 49. P. 2774. https://doi.org/10.1021/acs.accounts.6b00452
- 2. Lin H., Li Y.-Y., Li M.-Y. et al. // J. Mater. Chem. C. 2019. V. 7. P. 4638. https://doi.org/10.1039/C9TC00647H
- 3. Handy J.V., Zaheer W., Rothfuss A.R.M. et al. // Chem. Mater. 2022. V. 34. P. 1439. https://doi.org/10.1021/acs.chemmater.1c03762
- 4. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- 5. Yan M., Xue H.-G., Guo S.-P. // Cryst. Growth Des. 2021. V. 21. P. 698. https://doi.org/10.1021/acs.cgd.0c01407
- 6. Christy A.G., Mills S.J., Kampf A.R. // Mineral. Mag. 2016. V. 80. P. 415. https://doi.org/10.1180/minmag.2016.080.093
- 7. Kovrugin V.M., Colmont M., Siidra O.I. et al. // J. Cryst. Growth. 2017. V. 457. P. 307. https://doi.org/10.1016/j.jcrysgro.2016.01.006
- 8. Millet P., Johnsson M., Pashchenko V. et al. // Solid State Ionics. 2001. V. 141–142. P. 559. https://doi.org/10.1016/S0167-2738 (01)00765-2
- 9. Kim S.-H., Yeon J., Sefat A.S. et al. // Chem. Mater. 2010. V. 22. P. 6665. https://doi.org/10.1021/cm102659w
- 10. Charkin D.O., Grishaev V.Y., Omelchenko T.A. et al. // Solid State Sci. 2023. V. 137. P. 107116. https://doi.org/10.1016/j.solidstatesciences.2023.107116
- 11. Aksenov S.M., Charkin D.O., Banaru A.M. et al. // J. Struct. Chem. 2023. V. 64. P. 1797. https://doi.org/10.1134/S0022476623100013
- 12. Reutova O.V., Belokoneva E.L., Volkov A.S., Dimitrova O.V. // Crystallograpy Reports. 2024. V. 69 P. 485. https://doi.org/10.1134/S1063774524601382
- 13. Reutova O.V., Belokoneva E.L., Volkov A.S., Dimitrova O.V. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777
- 14. Charkin D.O., Dolgikh V.A., Omelchenko T.A. et al. // Symmetry. 2022. V. 14. P. 2087. https://doi.org/10.3390/sym14102087
- 15. Murtazoev A.F., Berdonosov P.S., Aksenov S.M. et al. // Acta Cryst. B. 2023. V. 79. Р. 176. https://doi.org/10.1107/S2052520622012227
- 16. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2021. V. 13. P. 1477. https://doi.org/10.3390/sym13081477
- 17. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
- 18. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
- 19. Charkin D.O., Nazarchuk E.V., Dmitriev D.N. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 14202. https://doi.org/10.3390/ijms241814202
- 20. May M., Debrus S., Venturini J. et al. // J. Mol. Struct. 1997. V. 436–437. P. 327. https://doi.org/10.1016/S0022-2860 (97)00113-0
- 21. Yankova R., Yotova T. // Chem. Data Collect. 2022. V. 42. P. 100947. https://doi.org/10.1016/j.cdc.2022.100947
- 22. Effenberger H. // Z. Krist. 1985. V. 173. P. 267. https://doi.org/10.1524/zkri.1985.173.3-4.267
- 23. Lafront A.M., Trombe J.C. // Inorg. Chim. Acta. 1995. V. 234. P. 19. https://doi.org/10.1016/0020-1693 (95)04500-9
- 24. Lafront A.-M., Trombe J.-C., Bonvoisin J. // Inorg. Chim. Acta. 1995. V. 238. P. 15. https://doi.org/10.1016/0020-1693 (95)04659-W
- 25. Trombe J.-C., Lafront A.-M., Bonvoisin J. // Inorg. Chim. Acta. 1997. V. 262. P. 47. https://doi.org/10.1016/S0020-1693 (97)05501-1
- 26. Spirovski F., Wagener M., Stefov V., Engelen B. // Z. Krist. 2007. V. 222. P. 91. https://doi.org/10.1524/ncrs.2007.0037
- 27. Pasha I., Choudhury A., Rao C.N.R. // Solid State Sci. 2003. V. 5. P. 257. https://doi.org/10.1016/S1293-2558 (02)00100-0
- 28. Kovrugin V.M., Krivovichev S.V., Mentré O., Colmont M. // Z. Krist. 2015. V. 230. P. 573. https://doi.org/10.1515/zkri-2015-1849
- 29. Charkin D.O., Markovski M.R., Siidra O.I et al. // Z. Krist. 2019. V. 234. P. 739. https://doi.org/10.1515/zkri-2019-0042
- 30. Markovski M.R., Charkin D.O., Siidra O.I., Nekrasova D.O. // Z. Krist. 2019. V. 234. P. 749. https://doi.org/10.1515/zkri-2019-0036
- 31. Grishaev V.Y., Siidra O.I., Markovski M.R. et al. // Z. Krist. 2023. V. 238 P. 177. https://doi.org/10.1515/zkri-2023-0004
- 32. Wagener M. “Synthese Charakterisierung und struktur-chemische Aspekte von Kupfer- und Silberchalkogenohalogeniden sowie von Halogeno- und Oxochalkogenaten(IV)”. Uinversität Siegen 2005. https://nbn-resolving.org/urn:nbn:de:hbz:467-1092
- 33. Johnston M.G., Harrison W.T.A. // Z. Anorg. Allg. Chem. 2000. V. 626. P. 2487. https://doi.org/10.1002/1521-3749 (200012)626:123.0.CO,2-E.
- 34. Feng M.-L., Prosvirin A.V., Mao J.-G., Dunbar K.R. // Chem. Eur. J. 2006. V. 12. P. 8312. https://doi.org/10.1002/chem.200600031
- 35. Johnston M.G., Harrison W.T.A. // Acta Cryst. E. 2003. V. 59. P. i62. https://doi.org/10.1107/S1600536803006378
- 36. Charkin D.O., Banaru A.M., Dmitriev D.N. et al. // Struct. Chem. 2024. V. 35. P. 39. https://doi.org/10.1007/s11224-023-02254-5
- 37. Charkin D.O., Kireev V.E., Dmitriev D.N. et al. // Struct. Chem. 2024. P. 1. https://doi.org/10.1007/s11224-024-02375-5
- 38. Oxford Diffraction CrysAlisPro. Oxford Diffraction Ltd Abingdon Oxfordshire UK, 2009.
- 39. Palatinus L., Chapuis G. // J. Appl. Cryst. 2007. V. 40. P. 786. https://doi.org/10.1107/S0021889807029238
- 40. Petricek V., Dusek M., Palatinus L. // Z. Krist. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
- 41. Petříček V., Palatinus L., Plášil J., Dušek M. // Z. Krist. 2023. V. 238. P. 271. https://doi.org/10.1515/zkri-2023-0005
- 42. Choudhury R.R., Chitra R., Kesari S. et al. // Mol. Phys. 2022. V. 120. P. e2003457. https://doi.org/10.1080/00268976.2021.2003457
- 43. Chukanov N.V., Rastsvetaeva R.K., Zubkova N.V. et al. // J. Raman Spectrosc. 2024. V. 55. № 5. P. 581. https://doi.org/10.1002/jrs.6656
- 44. Chukanov N.V., Vigasina M.F., Rastsvetaeva R.K. et al. // J. Raman Spectrosc. 2022. V. 53. P. 1188. https://doi.org/10.1002/jrs.6343
- 45. Aksenov S.M., Chukanov N.V., Tarasov V.P. et al. // J. Phys. Chem. Solids. 2024. V. 189. P. 111944. https://doi.org/10.1016/j.jpcs.2024.111944
- 46. Yamnova N.A., Aksenov S.M., Borovikova E.Y. et al. // Crystallography Reports. 2019. V. 64. P. 228. https://doi.org/10.1134/S1063774519020342
- 47. Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2016. V. 72. P. 133. https://doi.org/10.1107/S2052520615023069
- 48. Makarova I., Grebenev V., Dmitricheva E. et al. // Acta Cryst. B. 2014. V. 70. P. 218. https://doi.org/10.1107/S2052520613029892
- 49. Selezneva E.V., Makarova I.P., Malyshkina I.A. et al. // Acta Cryst. B. 2017. V. 73. P. 1105. https://doi.org/10.1107/S2052520617012847
- 50. Makarova I.P., Isakova N.N., Kalyukanov A.I. et al. // Acta Cryst. B. 2024. V. 80. P. 201. https://doi.org/10.1107/S2052520624003470
- 51. Ferraris G., Makovicky E., Merlino S. Crystallography of Modular Materials. Oxford: New York: Oxford University Press, 2008.
- 52. Jones J.T.A., Hasell T., Wu X. et al. // Nature. 2011. V. 474. P. 367. https://doi.org/10.1038/nature10125
- 53. Friščić T., MacGillivray L.R. // Croat. Chem. Acta. 2006. V. 79. P. 327.
- 54. Qian X., Gu X., Yang R. // Nano Energy. 2017. V. 41. P. 394. https://doi.org/10.1016/j.nanoen.2017.09.047
- 55. Aubrey M.L., Saldivar Valdes A., Filip M.R. et al. // Nature. 2021. V. 597. P. 355. https://doi.org/10.1038/s41586-021-03810-x
- 56. Yu S., Liu P., Xiao S. // J. Mater. Sci. 2021. V. 56. P. 11656. https://doi.org/10.1007/s10853-021-06038-2
- 57. Marchenko E.I., Korolev V.V., Mitrofanov A. et al. // Chem. Mater. 2021. V. 33. P. 1213. https://doi.org/10.1021/acs.chemmater.0c03935
- 58. Marchenko E.I., Kobeleva E.A., Eremin N.N. et al. // Mendeleev Commun. 2024. V. 34. P. 650. https://doi.org/10.1016/j.mencom.2024.09.008
- 59. Chukanov N.V., Jonsson E., Aksenov S.M. et al. // Phys. Chem. Miner. 2017. V. 44. P. 685. https://doi.org/10.1007/s00269-017-0893-2