RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Synthesis and crystal strucrure of Bis-(2,6-diaminopyridine) tetrachlorid zinc(II)

PII
S0023476125030154-1
DOI
10.31857/S0023476125030154
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
486-494
Abstract
In the presented work, the synthesis of a complex resulting from the reaction of 2,6-diaminopyridine with the Zn(II) ion in an alcohol solution of hydrochloric acid is described for the first time. The composition, molecular and crystal structure of the synthesized complex were determined by X-ray structural analysis. The structure of the new complex, its crystallographic data, and the geometry of hydrogen bonds in the crystal system were determined. The composition of the metal complex was confirmed by elemental analysis, and the existing chemical bonds were studied by IR spectroscopy. The surface of the crystals was studied according to Hirschfeld. To determine the stability of the obtained complex, its thermal analysis was carried out. The stability of the complex, caused by intramolecular hydrogen bonds, was confirmed.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Liu S.H., Chen J.-D., Liou L.-S., Wang J.-C. // Inorg. Chem. 2001. V. 40. № 25. P. 6499. https://doi.org/10.1021/ic010529c
  2. 2. Moussa O.B., Chebbi H., Zid M.F. // J. Molec. Struct. 2019. V. 1180. P. 72. https://doi.org/10.1016/j.molstruc.2018.11.077
  3. 3. Andreini C., Bertini I. // J. Inorg. Biochem. 2012. V. 111. P. 150. https://doi.org/10.1016/j.jinorgbio.2011.11.020
  4. 4. Balan A.M., Ashoki R.F.N., Vasanthi M. et al. // Int. J. Life Sci. Pharm. Res. 2013. V. 3. № 2. P. 67. https://www.ijlpr.com/index.php/journal/article/view/376/278
  5. 5. Crea F., De Stefano C., Milea D., Sammartano S. // J. Solution Chem. 2009. V. 38. P. 115. https://link.springer.com/article/10.1007/s10953-008-9357-0
  6. 6. Cigala R.M., Crea F., De Stefano С. et al. // J. Mol. Liq. 2012. V. 165. P. 143. https://doi.org/10.1016/j.molliq.2011.11.002
  7. 7. Cigala R.M., Crea F., De Stefano C. et al. // Monatch. Chem. 2015. V. 146. P. 527. https://doi.org/10.1007/s00706-014-1394-3
  8. 8. Umirova G.A., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. № 9. P. 856. https://doi.org/10.1107/S2056989023007466
  9. 9. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2023. V. 8. № 12. P. x231032. https://doi.org/10.1107/S2414314623010325
  10. 10. Shoukry A.A., Al-Mhayawi S.R. // Eur. J. Chem. 2013. № 4. Р. 260. https://doi.org/10.5155/eurjchem.4.3.260-267.800
  11. 11. Hall V.M., Bertke J.A., Swift J.A. // Acta Cryst. С. 2017. V. 73. № 11. P. 990. https://doi.org/10.1107/S2053229617014978
  12. 12. Sakong C. // Dyes and Pigments. 2011. V. 88. № 2. P. 166. https://doi.org/10.1016/j.dyepig.2010.06.003
  13. 13. Coelho P.J. // Dyes and Pigments. 2012. V. 92. № 1. P. 745. https://doi.org/10.1016/j.dyepig.2011.06.019
  14. 14. Groom C.R. // Acta Cryst. B. 2016. V. 72. № 2. P. 171. https://doi.org/10.1107/S2052520616003954
  15. 15. Raposo M.M. // Tetrahedron. 2011. V. 67. № 29. P. 5189. https://doi.org/10.1016/j.tet.2011.05.053
  16. 16. Khanmohammadi H. // Dyes and Pigments. 2013. V. 98. № 3. P. 557. https://doi.org/10.1016/j.dyepig.2013.03.023
  17. 17. Mahmoud W.H., Sayed F.N., Mohamed G.G. // Appl. Organometall. Chem. 2016. V. 30. № 11. P. 959. https://doi.org/10.1002/aoc.3529
  18. 18. Merino E. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3835. https://doi.org/10.1039/C0CS00183J
  19. 19. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.40.84a. 2020. Rigaku Corporation, Oxford, UK
  20. 20. Sheldrick G.M. // Acta Cryst. А. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. 21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://dx.doi.org/10.1107/S2053229614024218
  22. 22. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://dx.doi.org/10.1107/S0021889808042726
  23. 23. Nazarov Y.E., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // IUCrData. 2024. V. 9. № 6. Р. x240570. https://doi.org/10.1107/S2414314624005704
  24. 24. Ben Moussa O., Chebbi H., Zid M.F. // Acta Cryst. E. 2018. V. 74. № 4. P. 436. https://doi.org/10.1107/S2056989018003171
  25. 25. Suyunov J.R., Turaev Kh.Kh., Alimnazarov B.Kh. et al. // Acta Cryst. E. 2023. V. 79. P. 1083. https://doi.org/10.1107/S2056989023009350
  26. 26. Mghandef M., Boughzala H. // Acta Cryst. E. 2015. V. 71. № 5. P. 555. https://doi.org/10.1107/S2056989015007707
  27. 27. Nasr M.B., Soudani S., Lefebvre F. et al. // J. Mol. Struct. 2017. V. 138. P. 71. https://doi.org/10.1016/j.molstruc.2017.02.098
  28. 28. Spackman P.R., Byrom P.J. // Chem. Phys. Lett. 1997. V. 267. № 3–4. Р. 215. https://doi.org/10.1016/S0009-2614 (97)00100-0
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library