RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Investigation of subunit vaccine candidates against african swine fever vaccine candidates derived from subdomains of the transmembrane protein CD2v, using immunoinformatics and molecular dynamics metods

PII
S0023476125030174-1
DOI
10.31857/S0023476125030174
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
506-510
Abstract
African swine fever (ASF) remains a global threat to pig production, causing economic losses. In this study, a theoretical comparison of candidate subunit vaccines based on the ASFV transmembrane protein CD2v was performed. Three supramembrane subdomains of CD2v were evaluated using immunoinformatics, structure prediction and molecular modeling methods. The results show that all candidates are non-toxic, non-allergenic and able to induce a stable immune response, including long-term antibody production. Subdomain A stands out as the most promising due to its high immunogenicity, despite potential difficulties in expression in Escherichia coli. Immunomodeling of activation of both primary and secondary immune responses, analysis of structural stability showed the reliability of the candidates under ascertaining conditions. The study provides a theoretical basis for further experimental development of subunit vaccines against ASF, combining safety and efficacy.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Tran X.H., Le T.T.P., Nguyen Q.H. et al. // Transbound Emerg Dis. 2022. V. 69. № 4. P. 497. https://doi.org/10.1111/tbed.14329
  2. 2. Monteagudo P.L., Lacasta A., López E. et al. // J. Virology. 2017. № 21. P. 91. https://doi.org/10.1128/jvi.01058-17
  3. 3. Abramson J., Adler J., Dunger J. et al. // Nature. 2024. V. 630. P. 493. https://doi.org/10.1038/s41586-024-07487-w
  4. 4. Jeppe H., Trigos K.D., Pedersen M.D. et al. // ВioRxiv. 2022. № 487609. https://doi.org/10.1101/2022.04.08.487609
  5. 5. Kolesnikov I.A., Timiofeev V.I., Ermakov A.V. et al. // Crystallography Reports. 2023. V. 68. № 6. P. 955. https://doi.org/10.1134/S1063774523601077
  6. 6. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. P. 4. https://doi.org/10.1186/1471-2105-8-4
  7. 7. Sudipto Saha, Raghava G.P.S. // Nucleic Acids Res. 2006. V. 34. P. 202. https://doi.org/10.1093/nar/gkl343
  8. 8. Sharma N., Naorem L.D., Jain S., Raghava G.P.S. // Brief Bioinform. 2022. V. 23. № 5. P. 174. https://doi.org/10.1093/bib/bbac174
  9. 9. Rapin N., Lund O., Bernaschi M., Castiglione F. // PLoS One. 2010. V. 5. № 4. P. 9862. https://doi.org/10.1371/journal.pone.0009862
  10. 10. Páll S., Zhmurov A., Bauer P. et al. // J. Chem. Phys. 2020. V. 153. № 13. P. 134110. https://doi.org/10.1063/5.0018516
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library