RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Plasmon polaritons of the TE and TM types in a metal film bordering a superlattice. III. Plasmon polaritons in bilayer superlattices

PII
S0023476125030181-1
DOI
10.31857/S0023476125030181
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
511-519
Abstract
The paper theoretically investigates TE and TM polarized surface plasmon polaritons in a metal film in contact with a semi-infinite periodic superlattice formed by alternating layers of two materials. It is shown that in a certain case, the frequency dependence of the impedances of such a bilayer superlattice can be of only two types out of three possible types of dependencies. The dispersion curves TE and TM of surface plasmon polaritons in a silver film have been calculated for a number of structures consisting of various combinations of bilayer superlattices containing layers of quartz and titanium oxide. The calculation results are compared with the conclusions of the general theory on the maximum number of surface plasmon polaritons. The effect of the absorption of electromagnetic waves in the film on the characteristics of surface plasmon polaritons is analyzed.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Даринский А.Н. // Кристаллография. 2024. Т. 69. № 6. С. 1018. https://doi.org/10.31857/S0023476124060123
  2. 2. Даринский А.Н. // Кристаллография. 2024. Т. 69. № 6. С. 1029. https://doi.org/10.31857/S0023476124060136
  3. 3. Yariv А., Yeh P. Photonics: Optical Electronics in Modern Communications. 6th ed. Oxford University Press, 2007. 850 p.
  4. 4. Басс Ф.Г., Булгаков А.А., Тетервов А.П. Высокочастотные свойства полупроводников со сверхрешетками. М.: Наука, 1989. 288 с.
  5. 5. Shuvalov A.L., Poncelet O., Golkin S.V. // Proc. R. Soc. A. 2009. V. 465. P. 1489. http://dx.doi.org/ doi:10.1098/rspa.2008.0457
  6. 6. Pavlichenko I., Exner A., Lugli P. et al. // J. Intell. Mater. Syst. Struct. 2012. V. 24. P. 2204. https://doi.org/10.1177/1045389X12453970
  7. 7. Mbakop F.K., Djongyang N., Raïdandi D. // J. Eur. Opt. Soc.-Rapid Publ. 2016. V. 12. P. 1. https://doi.org/10.1186/s41476-016-0026-4
  8. 8. Saravanan S., Dubey R.S. // Nanosyst.: Phys., Chem., Math. 2019. V. 10. P. 63. https://doi.org/10.17586/2220-8054-2019-10-1-63-69
  9. 9. Романова В.А., Матюшкин Л.Б., Мошников В.А. // Физика и химия стекла. 2018. Т. 44. С. 11. https://doi.org/10.1134/S1087659618010108
  10. 10. Mbakop F.K., Tom A., Dadjé A. et al. // Chin. J. Phys. 2020. V. 67. P. 124. https://doi.org/10.1016/j.cjph.2020.06.004
  11. 11. https://refractiveindex.info
  12. 12. Sarkar S., Gupta V., Kumar M. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 13752. https://doi.org/10.1021/acsami.8b20535
  13. 13. Lemarchand F. Private communications. 2013.
  14. 14. Yang H.U., D'Archangel J., Sundheimer M.L. et al. // Phys. Rev. B. 2015. V. 91. P. 235137. https://doi.org/10.1103/PhysRevB.91.235137
  15. 15. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. 2-е изд., испр. М.: Наука, 1982. 621 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library