- PII
- S0023476125030206-1
- DOI
- 10.31857/S0023476125030206
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 3
- Pages
- 529-540
- Abstract
- Complex structural studies of nanosized bismuth-doped yttrium iron garnet (BYIG) films were performed using X-ray diagnostics, scanning/transmission electron microscopy, and energy-dispersive X-ray microanalysis. The crystal structure of the film-substrate interface, the near-surface layers together with change in interplanar distances along the film thickness were determined. The features of the film microstructure were revealed: the presence of pores, the absence of misfit dislocations at the interface, the formation of maghemite (γ-Fe2O3) particles on the film surface and a decrease in the Bi content towards the film surface. Assumptions were made about the change in the Bi content depending on the film thickness, which can serve as an explanation for the mechanism of decreasing the magnitude of magneto-optical effects in these films with decreasing thickness.
- Keywords
- Date of publication
- 15.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Zvezdin A.K., Kotov V.A. // Modern Magnetooptics and Magnetooptical Materials. CRC Press, 1997. P. 381. https://doi.org/10.1887/075030362x
- 2. Stadler B.J.H., Mizumoto T. // IEEE Photonics J. 2013. V. 6. № 1. P. 1. https://doi.org/10.1109/JPHOT.2013.2293618
- 3. Kharratian S., Urey H., Onbasli M.C. // Adv. Opt. Mater. 2020. V. 8. № 1. P. 1901381. https://doi.org/10.1002/adom.201901381
- 4. Alisafaee H., Ghanaatshoar M. // Appl. Opt. 2012. V. 51. № 21. P. 5144. https://doi.org/10.1364/AO.51.005144
- 5. Telegin A., Sukhorukov Y. // Magnetochemistry. 2022. V. 8. № 12. P. 173. https://doi.org/10.3390/magnetochemistry8120173
- 6. Rehspringer J.-L., Bursik J., Niznansky D. et al. // J. Magn. Magn. Mater. 2000. V. 211. № 1–3. P. 291. https://doi.org/10.1016/s0304-8853 (99)00749-0
- 7. Erol M., Ozturk Y., Avgin I. et al. // J. Phys.: Conf. Ser. 2009. V. 153. № 1. P. 012049. https://doi.org/10.1088/1742-6596/153/1/012049
- 8. Matsumoto K., Sasaki S., Asahara Y. et al. // J. Magn. Magn. Mater. 1992. V. 104. P. 451. https://doi.org/10.1016/0304-8853 (92)90875-O
- 9. Sellappan P., Tang C., Shi J. et al. // Mater. Res. Lett. 2017. V. 5. № 1. P. 41. https://doi.org/10.1080/21663831.2016.1195779
- 10. Kumar R., Samantaray B., Hossain Z. // J. Phys.: Condens. Matter. 2019. V. 31. P. 435802. https://doi.org/10.1088/1361-648X/ab2e93
- 11. Sposito A., Gregory S.A., de Groot P.A.J. et al. // J. Appl. Phys. 2014. V. 115. № 5. https://doi.org/10.1063/1.4864134
- 12. Kahl S., Grishin A.M. // J. Magn. Magn. Mater. 2004. V. 278. № 1–2. P. 244. https://doi.org/10.1016/j.jmmm.2003.12.1355
- 13. Kidoh H., Morimoto A., Shimizu T. // Appl. Phys. Lett. 1991. V. 59. № 2. P. 237. https://doi.org/10.1063/1.105977
- 14. Fratello V.J., Licht S.J., Brandle C.D. et al. // J. Cryst. Growth. 1994. V. 142. № 1–2. P. 93. https://doi.org/10.1016/0022-0248 (94)90274-7
- 15. Okada M., Katayama S., Tominaga K.J. // Appl. Phys. 1991. V. 69. № 6. P. 3566. https://doi.org/10.1063/1.348498
- 16. Deschanvres J.L., Cenda D. // J. Magn. Magn. Mater. 2002. V. 242–245. № 2. P. 1172. https://doi.org/10.1016/S0304-8853 (01)01290-2
- 17. Jesenska E., Yoshida T., Shinozaki K. et al. // Opt. Mater. Express. 2016. V. 6. № 6. P. 1986. https://doi.org/10.1364/OME.6.001986
- 18. Krumme J.P., Doormann V., Willich P. // J. Appl. Phys. 1985. V. 57. № 8. P. 3885. https://doi.org/10.1063/1.335486
- 19. Okuda T., Koshizuka N., Hayashi K. et al. // IEEE Trans. Magn. 1987. V. 23. № 5. P. 3491. https://doi.org/10.1109/TMAG.1987.1065531
- 20. Sukhorukov Y.P., Telegin A., Lobov I.D. et al. // J. Magn. Magn. Mater. 2024. V. 608. P. 172415. https://doi.org/10.1016/j.jmmm.2024.172415
- 21. Lee I.J., Kim J.Y., Yu C. et al. // J. Vac. Sci. Technol. A. 2005. V. 23. P. 1450. https://doi.org/10.1116/1.2013321
- 22. Andreeva M., Baulin R., Nosov A. et al. // Magnetism. 2022. V. 2. № 4. P. 328. https://doi.org/10.3390/magnetism2040023
- 23. Yakunin S.N., Makhotkin I.A., Nikolaev K.V. et al. // Opt. Express. 2014. V. 22. № 17. P. 20076. https://doi.org/10.1364/OE.22.020076
- 24. Jergel M., Mikulik P., Majkova E. et al. // J. Phys. D. 1999. V. 32. № 10A. P. A220.
- 25. Васильев А.Л., Субботин И.А., Беляева А.О. и др. // Физика металлов и металловедение. 2024. Т. 125. № 1. С. 70.
- 26. Пруцков Г.В., Чесноков Ю.М., Васильев А.Л. и др. // Кристаллография. 2017. Т. 62. № 6. С. 947. https://doi.org/10.7868/S0023476117060194
- 27. Афанасьев А.М., Имамов Р.М., Ломов А.А. и др. // Тр. ФТИАН. 1999. Т. 14. С. 54.
- 28. Афанасьев А.М., Чуев М.А., Имамов Р.М. и др. // Письма в ЖЭТФ. 2001. Т. 74. № 10. С. 560.
- 29. Chesnokov Y.M., Vasiliev A.L., Prutskov G.V. et al. // Thin Solid Films. 2017. V. 632. P. 79. https://doi.org/10.1016/j.tsf.2017.04.033
- 30. Subbotin I.A., Pashaev E.M., Vasilev A.L. et al. // Phys. B: Condens. Matter. 2019. V. 573. P. 28. https://doi.org/10.1016/j.physb.2019.06.044
- 31. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge: University Press. 1999. 952 p.
- 32. Abel`es F. // J. Phys. Radium. 1950. V. 11. № 7. P. 307. https://doi.org/10.1051/jphysrad:01950001107030700
- 33. Dvoryankina G.G., Pinsker Z.G. // Doklady Akademii Nauk SSSR. Russ. Acad. Sci. 1960. V. 132. № 1. P. 110.
- 34. Claassen A.A. // Proc. Phys. Soc. London. 1925. V. 38. № 1. P. 482. https://doi.org/10.1088/1478-7814/38/1/348
- 35. Mazzocchi V.L., Parente C.B.R. // J. Appl. Cryst. 1998. V. 31. P. 718.
- 36. Okudera H., Toraya H. // Z. Kristallogr. 1998. V. 213. P. 461.
- 37. Mitra A., Cespedes O., Ramasse Q. et al. // Sci. Rep. 2017. V. 7. № 1. P. 11774. https://doi.org/10.1038/s41598-017-10281-6
- 38. Fischer P., Hälg W., Stoll E. et al. // Acta Cryst. 1966. V. 21. № 5. P. 765.
- 39. Durán A., Ostos C., Arnache O. et al. // J. Appl. Phys. 2017. V. 122. № 13. https://doi.org/10.1063/1.5005908
- 40. Sawada H. // J. Solid State Chem. 1997. V. 132. № 2. P. 300. https://doi.org/10.1006/jssc.1997.7462
- 41. Thornton J.A. // J. Vac. Sci. Technol. 1974. V. 11. № 4. P. 666. https://doi.org/10.1116/1.1312732
- 42. Thornton J.A. // J. Vac. Sci. Technol. 1975. V. 12. № 4. P. 830. https://doi.org/10.1116/1.568682
- 43. Masłyk M., Borysiewicz M.A., Wzorek M. et al. // Appl. Surf. Sci. 2016. V. 389. P. 287. https://doi.org/10.1016/j.apsusc.2016.07.098
- 44. Borysiewicz M.A., Dynowska E., Kolkovsky V. et al. // Phys. Status Solidi. A. 2012. V. 209. № 12. P. 2463. https://doi.org/10.1002/pssa.201228041
- 45. Fortio Godinho V.C., Rojas Ruiz T.C., Fernández Camacho A. // Micropor. Mesopor. Mater. 2012. V. 149. № 1. P. 142. https://doi.org/10.1016/j.micromeso.2011.08.018
- 46. Godinho V., Moskovkin P., Álvarez R. et al. // Nanotechnology. 2014. V. 25. № 35. P. 355705. https://doi.org/10.1088/0957-4484/25/35/355705
- 47. Han Y., Li S., Li X. et al. // ACS Omega. 2024. V. 9. № 12. P. 14551. https://doi.org/10.1021/acsomega.4c00540
- 48. Dukarov S., Petrushenko S., Sukhov V. et al. // Problems Atomic Sci. Technol. 2014. V. 89. P. 110.
- 49. Borysiewicz M.A., Barańczyk P., Zawadzki J. et al. // Crystals. 2024. V. 14. № 11. P. 965. https://doi.org/10.3390/cryst14110965
- 50. Lee Y.Z., Zeng W.Y., Cheng I.C. // Thin Solid Films. 2020. V. 699. P. 137913. https://doi.org/10.1016/j.tsf.2020.137913
- 51. Chen L., Kong L., Wang Y. et al. // Metall. Mater. Trans. B. 2024. P. 1. https://doi.org/10.1007/s11663-024-03409-3
- 52. Zurbuchen M.A., Lettieri J., Fulk S.J. et al. // Appl. Phys. Lett. 2003. V. 82. № 26. P. 4711. https://doi.org/10.1063/1.1574406