RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

Microstructure of bismuth doped yttrium iron garnets thin films

PII
S0023476125030206-1
DOI
10.31857/S0023476125030206
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
529-540
Abstract
Complex structural studies of nanosized bismuth-doped yttrium iron garnet (BYIG) films were performed using X-ray diagnostics, scanning/transmission electron microscopy, and energy-dispersive X-ray microanalysis. The crystal structure of the film-substrate interface, the near-surface layers together with change in interplanar distances along the film thickness were determined. The features of the film microstructure were revealed: the presence of pores, the absence of misfit dislocations at the interface, the formation of maghemite (γ-Fe2O3) particles on the film surface and a decrease in the Bi content towards the film surface. Assumptions were made about the change in the Bi content depending on the film thickness, which can serve as an explanation for the mechanism of decreasing the magnitude of magneto-optical effects in these films with decreasing thickness.
Keywords
Date of publication
15.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Zvezdin A.K., Kotov V.A. // Modern Magnetooptics and Magnetooptical Materials. CRC Press, 1997. P. 381. https://doi.org/10.1887/075030362x
  2. 2. Stadler B.J.H., Mizumoto T. // IEEE Photonics J. 2013. V. 6. № 1. P. 1. https://doi.org/10.1109/JPHOT.2013.2293618
  3. 3. Kharratian S., Urey H., Onbasli M.C. // Adv. Opt. Mater. 2020. V. 8. № 1. P. 1901381. https://doi.org/10.1002/adom.201901381
  4. 4. Alisafaee H., Ghanaatshoar M. // Appl. Opt. 2012. V. 51. № 21. P. 5144. https://doi.org/10.1364/AO.51.005144
  5. 5. Telegin A., Sukhorukov Y. // Magnetochemistry. 2022. V. 8. № 12. P. 173. https://doi.org/10.3390/magnetochemistry8120173
  6. 6. Rehspringer J.-L., Bursik J., Niznansky D. et al. // J. Magn. Magn. Mater. 2000. V. 211. № 1–3. P. 291. https://doi.org/10.1016/s0304-8853 (99)00749-0
  7. 7. Erol M., Ozturk Y., Avgin I. et al. // J. Phys.: Conf. Ser. 2009. V. 153. № 1. P. 012049. https://doi.org/10.1088/1742-6596/153/1/012049
  8. 8. Matsumoto K., Sasaki S., Asahara Y. et al. // J. Magn. Magn. Mater. 1992. V. 104. P. 451. https://doi.org/10.1016/0304-8853 (92)90875-O
  9. 9. Sellappan P., Tang C., Shi J. et al. // Mater. Res. Lett. 2017. V. 5. № 1. P. 41. https://doi.org/10.1080/21663831.2016.1195779
  10. 10. Kumar R., Samantaray B., Hossain Z. // J. Phys.: Condens. Matter. 2019. V. 31. P. 435802. https://doi.org/10.1088/1361-648X/ab2e93
  11. 11. Sposito A., Gregory S.A., de Groot P.A.J. et al. // J. Appl. Phys. 2014. V. 115. № 5. https://doi.org/10.1063/1.4864134
  12. 12. Kahl S., Grishin A.M. // J. Magn. Magn. Mater. 2004. V. 278. № 1–2. P. 244. https://doi.org/10.1016/j.jmmm.2003.12.1355
  13. 13. Kidoh H., Morimoto A., Shimizu T. // Appl. Phys. Lett. 1991. V. 59. № 2. P. 237. https://doi.org/10.1063/1.105977
  14. 14. Fratello V.J., Licht S.J., Brandle C.D. et al. // J. Cryst. Growth. 1994. V. 142. № 1–2. P. 93. https://doi.org/10.1016/0022-0248 (94)90274-7
  15. 15. Okada M., Katayama S., Tominaga K.J. // Appl. Phys. 1991. V. 69. № 6. P. 3566. https://doi.org/10.1063/1.348498
  16. 16. Deschanvres J.L., Cenda D. // J. Magn. Magn. Mater. 2002. V. 242–245. № 2. P. 1172. https://doi.org/10.1016/S0304-8853 (01)01290-2
  17. 17. Jesenska E., Yoshida T., Shinozaki K. et al. // Opt. Mater. Express. 2016. V. 6. № 6. P. 1986. https://doi.org/10.1364/OME.6.001986
  18. 18. Krumme J.P., Doormann V., Willich P. // J. Appl. Phys. 1985. V. 57. № 8. P. 3885. https://doi.org/10.1063/1.335486
  19. 19. Okuda T., Koshizuka N., Hayashi K. et al. // IEEE Trans. Magn. 1987. V. 23. № 5. P. 3491. https://doi.org/10.1109/TMAG.1987.1065531
  20. 20. Sukhorukov Y.P., Telegin A., Lobov I.D. et al. // J. Magn. Magn. Mater. 2024. V. 608. P. 172415. https://doi.org/10.1016/j.jmmm.2024.172415
  21. 21. Lee I.J., Kim J.Y., Yu C. et al. // J. Vac. Sci. Technol. A. 2005. V. 23. P. 1450. https://doi.org/10.1116/1.2013321
  22. 22. Andreeva M., Baulin R., Nosov A. et al. // Magnetism. 2022. V. 2. № 4. P. 328. https://doi.org/10.3390/magnetism2040023
  23. 23. Yakunin S.N., Makhotkin I.A., Nikolaev K.V. et al. // Opt. Express. 2014. V. 22. № 17. P. 20076. https://doi.org/10.1364/OE.22.020076
  24. 24. Jergel M., Mikulik P., Majkova E. et al. // J. Phys. D. 1999. V. 32. № 10A. P. A220.
  25. 25. Васильев А.Л., Субботин И.А., Беляева А.О. и др. // Физика металлов и металловедение. 2024. Т. 125. № 1. С. 70.
  26. 26. Пруцков Г.В., Чесноков Ю.М., Васильев А.Л. и др. // Кристаллография. 2017. Т. 62. № 6. С. 947. https://doi.org/10.7868/S0023476117060194
  27. 27. Афанасьев А.М., Имамов Р.М., Ломов А.А. и др. // Тр. ФТИАН. 1999. Т. 14. С. 54.
  28. 28. Афанасьев А.М., Чуев М.А., Имамов Р.М. и др. // Письма в ЖЭТФ. 2001. Т. 74. № 10. С. 560.
  29. 29. Chesnokov Y.M., Vasiliev A.L., Prutskov G.V. et al. // Thin Solid Films. 2017. V. 632. P. 79. https://doi.org/10.1016/j.tsf.2017.04.033
  30. 30. Subbotin I.A., Pashaev E.M., Vasilev A.L. et al. // Phys. B: Condens. Matter. 2019. V. 573. P. 28. https://doi.org/10.1016/j.physb.2019.06.044
  31. 31. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge: University Press. 1999. 952 p.
  32. 32. Abel`es F. // J. Phys. Radium. 1950. V. 11. № 7. P. 307. https://doi.org/10.1051/jphysrad:01950001107030700
  33. 33. Dvoryankina G.G., Pinsker Z.G. // Doklady Akademii Nauk SSSR. Russ. Acad. Sci. 1960. V. 132. № 1. P. 110.
  34. 34. Claassen A.A. // Proc. Phys. Soc. London. 1925. V. 38. № 1. P. 482. https://doi.org/10.1088/1478-7814/38/1/348
  35. 35. Mazzocchi V.L., Parente C.B.R. // J. Appl. Cryst. 1998. V. 31. P. 718.
  36. 36. Okudera H., Toraya H. // Z. Kristallogr. 1998. V. 213. P. 461.
  37. 37. Mitra A., Cespedes O., Ramasse Q. et al. // Sci. Rep. 2017. V. 7. № 1. P. 11774. https://doi.org/10.1038/s41598-017-10281-6
  38. 38. Fischer P., Hälg W., Stoll E. et al. // Acta Cryst. 1966. V. 21. № 5. P. 765.
  39. 39. Durán A., Ostos C., Arnache O. et al. // J. Appl. Phys. 2017. V. 122. № 13. https://doi.org/10.1063/1.5005908
  40. 40. Sawada H. // J. Solid State Chem. 1997. V. 132. № 2. P. 300. https://doi.org/10.1006/jssc.1997.7462
  41. 41. Thornton J.A. // J. Vac. Sci. Technol. 1974. V. 11. № 4. P. 666. https://doi.org/10.1116/1.1312732
  42. 42. Thornton J.A. // J. Vac. Sci. Technol. 1975. V. 12. № 4. P. 830. https://doi.org/10.1116/1.568682
  43. 43. Masłyk M., Borysiewicz M.A., Wzorek M. et al. // Appl. Surf. Sci. 2016. V. 389. P. 287. https://doi.org/10.1016/j.apsusc.2016.07.098
  44. 44. Borysiewicz M.A., Dynowska E., Kolkovsky V. et al. // Phys. Status Solidi. A. 2012. V. 209. № 12. P. 2463. https://doi.org/10.1002/pssa.201228041
  45. 45. Fortio Godinho V.C., Rojas Ruiz T.C., Fernández Camacho A. // Micropor. Mesopor. Mater. 2012. V. 149. № 1. P. 142. https://doi.org/10.1016/j.micromeso.2011.08.018
  46. 46. Godinho V., Moskovkin P., Álvarez R. et al. // Nanotechnology. 2014. V. 25. № 35. P. 355705. https://doi.org/10.1088/0957-4484/25/35/355705
  47. 47. Han Y., Li S., Li X. et al. // ACS Omega. 2024. V. 9. № 12. P. 14551. https://doi.org/10.1021/acsomega.4c00540
  48. 48. Dukarov S., Petrushenko S., Sukhov V. et al. // Problems Atomic Sci. Technol. 2014. V. 89. P. 110.
  49. 49. Borysiewicz M.A., Barańczyk P., Zawadzki J. et al. // Crystals. 2024. V. 14. № 11. P. 965. https://doi.org/10.3390/cryst14110965
  50. 50. Lee Y.Z., Zeng W.Y., Cheng I.C. // Thin Solid Films. 2020. V. 699. P. 137913. https://doi.org/10.1016/j.tsf.2020.137913
  51. 51. Chen L., Kong L., Wang Y. et al. // Metall. Mater. Trans. B. 2024. P. 1. https://doi.org/10.1007/s11663-024-03409-3
  52. 52. Zurbuchen M.A., Lettieri J., Fulk S.J. et al. // Appl. Phys. Lett. 2003. V. 82. № 26. P. 4711. https://doi.org/10.1063/1.1574406
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library