RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

COMPUTER DIFFRACTION TOMOGRAPHY. DIGITAL IMAGE PROCESSING AND ANALYSIS BASED ON THE 1D-, 2D-SIZED GUIDED AND WAVELET-FUNCTION FILTER PROCESSING

PII
S0023476125040029-1
DOI
10.31857/S0023476125040029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
552-559
Abstract
One presents and analyzes the results of computer processing for a plane-wave X-ray topography imaging of a point defect of the Coulomb-types in the Si(111) crystal recorded by an X-ray detector against a background of the Gaussian noise, and their subsequent filtering by using the 1D-, 2D-sized guided and a heuristic wavelet 4th-order Daubechie's atomic function. The filtering efficiency of a topography image is determined by the parameter of the averaged over all pixels relative square deviations of the pixel intensities (RMS.) of the processed and reference (noise-free) 2D image. Practical methods for selecting filtration parameters are proposed, using which the considered methods work well enough to be used in practice for the noise processing of plane-wave X-ray topography images, meaning their use for the 3D digital recovering nanosized crystal defects.
Keywords
Date of publication
14.05.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Authier A. Dynamical Theory of X-ray Diffraction. New York: Oxford University Press, 2001. 680 p.
  2. 2. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. P. 1616. https://doi.org/10.1107/S160057671801419X
  3. 3. Бондаренко В.И., Конарев П.В., Чуховский Ф.Н. // Кристаллография. 2020. Т. 65. № 6. С. 845. https://doi.org/10.31857/S0023476120060090
  4. 4. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Acta Cryst. A. 2020. V. 76. P. 16. https://doi.org/10.1107/S2053273320000145
  5. 5. Hendriksen A.A., Bührer M., Leone L. et al. // Sci. Rep. 2021. V. 11. P. 11895. https://doi.org/10.1038/s41598-021-91084-8
  6. 6. Chukhovskii F.N., Konarev P.V., Volkov V.V. // Crystals. 2024. V. 14. P. 29. https://doi.org/10.3390/cryst14010029
  7. 7. Бондаренко В.И., Рехвиашвили C.Ш., Чуховский Ф.Н. // Кристаллография. 2024. Т. 69. № 5. С. 755. https://doi.org/10.31857/S0023476124050012
  8. 8. Welstead S. Fractal and Wavelet Image Compression Techniques. SPIE Publications, 1999. 254 p.
  9. 9. He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
  10. 10. Nagajyothi G., Raghuveera E. // Int. J. Adv. Res. Electron. Commun. Eng. 2016. V. 5. P. 2362.
  11. 11. Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
  12. 12. Zhang Y.Q., Ding Y., Liu J. // IET Image Process. 2013. V. 7. № 3. P. 270. https://doi.org/10.1049/iet-ipr.2012.0351
  13. 13. Zhu S., Yu Z. // IET Image Process. 2020. V. 14. № 11. P. 2561. https://doi.org/10.1049/iet-ipr.2019.1471
  14. 14. Малла С. Вейвлеты в обработке сигналов. М.: Мир, 2005. 671 с.
  15. 15. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
  16. 16. Дремин И.М., Иванов О.В., Нечитайло В.А. // Успехи физ. наук. 2001. Т. 171. № 5. С. 465. https://doi.org/10.3367/UFNr.0171.200105a.0465
  17. 17. Уэлстид С. Фракталы и вейвлеты для сжатия изображений в действии. М.: Триумф, 2003. 320 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library