RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

X-RAY TOPO-TOMOGRAPHY OF LARGE HPHT SYNTHETIC DIAMONDS

PII
S0023476125040042-1
DOI
10.31857/S0023476125040042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
565-576
Abstract
Extended defects in large synthetic diamonds grown at high pressures and high temperatures (HPHT) using thermal gradient method were studied by X-ray topo-tomography with a laboratory setup. It is shown that temperature and growth rate are the principal factors influencing crystalline quality of the diamonds. Synthesis at high temperatures and low rate allows growth of single crystals with low density of dislocations, stacking faults and microtwin lamellae. Annihilation kinetics of the extended defects during annealing at high pressure implies important role of vacancies diffusion. The annihilation of such defects leads to formation of perfect dislocations.
Keywords
Date of publication
04.04.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Palyanov Y., Kupriyanov I., Khokhryakov A., Ralchenko V. // Handbook of Crystal Growth. 2nd ed. / Eds. Nishinaga T., Rudolph P. Amsterdam: Elsevier, 2015. V. 2a. P. 671. https://doi.org/10.1016/B978-0-444-63303-3.00017-1
  2. 2. D’Haenens-Johansson U.F.S., Butler J.E., Katrusha A.N. // Rev. Miner. Geochem. 2022. V. 88 (1). P. 689. https://doi.org/10.2138/rmg.2022.88.13
  3. 3. Pal’yanov Yu.N., Borzdov Yu.M., Sokol A.G. et al. // Diamond Relat. Mater. 1998. V. 7. P. 916. https://doi.org/10.1016/S0925-9635 (97)00325-7
  4. 4. Palyanov Yu.N., Borzdov Yu.M., Gusev V.A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 179. https://doi.org/10.1016/S0168-9002 (99)00749-4
  5. 5. Khokhryakov A.F., Palyanov Y.N., Kupriyanov I.N. et al. // J. Cryst. Growth. 2011. V. 317. P. 32. https://doi.org/10.1016/j.jcrysgro.2011.01.011
  6. 6. Shevyrtalov S., Barannikov A., Palyanov Y. et al. // J. Synchr. Rad. 2021. V. 28. P. 104. https://doi.org/10.1107/S1600577520014538
  7. 7. Lang A.R. // Diffraction and Imaging Techniques in Material Science / Eds. Amelinckx S. et al. Amsterdam: North Holland, 1978. V. 2. P. 623.
  8. 8. Moore M., Nailer S.G., Wierzchowski W.K. // Crystals. 2016. V. 6. P. 71. https://doi.org/10.3390/cryst6070071
  9. 9. Burns R.C., Chumakov A.J., Connell S. et al. // J. Phys. Condens. Matter. 2009. V. 21. P. 364224. https://doi.org/10.1088/0953-8984/21/36/364224
  10. 10. Kowalski G., Moore M., Gledhill G., Maricic Z. // Diam. Relat. Mater. 1996. V. 4. P. 1254. https://doi.org/10.1016/0925-9635 (96)00540-7
  11. 11. Пальянов Ю.Н., Хохряков А.Ф., Борздов Ю.М. и др. // Геология и геофизика. 1997. Т. 38 (5). С. 882.
  12. 12. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. // Cryst. Growth Des. 2010. V. 10. P. 3169. https://doi.org/10.1021/cg100322p
  13. 13. Khokhryakov A.F., Palyanov Y.N. // J. Cryst. Growth. 2006. V. 293. P. 469. https://doi.org/10.1016/j.jcrysgro.2006.05.044
  14. 14. Khokhryakov A.F., Palyanov Yu.N., Kupriyanov I.N. et al. // J. Cryst. Growth. 2014. V. 386. P. 162. https://doi.org/10.1016/j.jcrysgro.2013.09.047
  15. 15. Анисимов Н.П., Золотов Д.А., Бузмаков А.В. и др. // Кристаллография. 2023. Т. 68 (4). С. 507. https://doi.org/10.31857/S0023476123600192
  16. 16. Tolansky S., Miller R.F., Punglia J. // Philos. Mag. 1972. V. 26 (6). P. 1275. https://doi.org/10.1080/14786437208220341
  17. 17. Frank F.C., Lang A.R., Evans D.J.F. et al. // J. Cryst. Growth. 1990. V. 100. P. 354. https://doi.org/10.1016/0022-0248 (90)90235-D
  18. 18. Gaukroger M.P., Martineau P.M., Crowder M.J. et al. // Diam. Relat. Mater. 2008. V. 17. P. 262. https://doi.org/10.1016/j.diamond.2007.12.036
  19. 19. Khokhryakov A.F., Palyanov Y.N. // J. Cryst. Growth. 2007. V. 306. P. 458. https://doi.org/10.1016/j.jcrysgro.2007.05.028
  20. 20. Tolansky S. // Proc. Roy. Soc. London. A. 1962. V. 270 (1343). P. 443. https://doi.org/10.1098/rspa.1962.0236
  21. 21. Schindelin J., Arganda-Carreras I., Frise E. et al. // Nat. Methods. 2012. V. 9. P. 676. https://doi.org/10.1038/nmeth.2019
  22. 22. Martineau P.M., Gaukroger M.P., Guy K.B. et al. // J. Phys.: Condens. Matter 2009. V. 21. P. 364205. https://doi.org/10.1088/0953-8984/21/36/364205
  23. 23. Masuya S., Hanada K., Oshima T. et al. // Diam. Relat. Mater. 2017. V. 75. P. 155. https://doi.org/10.1016/j.diamond.2017.04.003
  24. 24. Анцыгин В.Д., Гусев В.А., Калинин А.А. и др. // Автометрия. 1998. № 1. С. 10.
  25. 25. Tatsumi N., Tamasaku K., Ito T., Sumiya H. // J. Cryst. Growth. 2017. V. 458. P. 27. https://doi.org/10.1016/j.jcrysgro.2016.10.033
  26. 26. Sumiya H., Harano K., Tamasaku K. // Diam. Relat. Mater. 2015. V. 58. P. 221. https://doi.org/10.1016/j.diamond.2015.08.006
  27. 27. Квасница В.Н., Харькив А.Д., Вишневский А.А. и др. // Минералогический журнал. 1980. № 3. С. 40.
  28. 28. Kvasnytsya V. // Diam. Relat. Mater. 2013. V. 39. P. 89. https://doi.org/10.1016/j.diamond.2013.08.005
  29. 29. Tolansky S., Sunagawa I. // Nature. 1959. V. 184. P. 1526. https://doi.org/10.1038/1841526a0
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library