RAS PhysicsКристаллография Crystallography Reports

  • ISSN (Print) 0023-4761
  • ISSN (Online) 3034-5510

INTERACTION OF FERROELECTRIC DOMAIN WALLS AND SHAPE OF EQUILIBRIUM REPOLARIZATION NUCLEI

PII
S0023476125040055-1
DOI
10.31857/S0023476125040055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
577-582
Abstract
The growth of a repolarization nucleus in an electric field is hindered by cohesive forces acting near its tips on the adjacent domain walls. They can reach large values when the distance between the domain walls becomes comparable to their thickness. It is shown that the cohesive forces are expressed in terms of the coefficients of the Ginzburg-Landau energy expansion, which includes a gradient contribution. For a uniaxial ferroelectric, an estimate of the maximum value of the internal field associated with the gradient interaction of the domain walls is obtained. Its relation to the internal coercive field E in the Ginzburg-Landau theory is E* /E = 3√3/8 ≈ 0.65.
Keywords
Date of publication
23.03.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Инденбом В.Л. // Изв. AH CCCP. Сep. физ. 1979. Т. 43. С. 1631.
  2. 2. Инденбом В.Л., Чамров В.А. // Кристаллография. 1980. Т. 25. С. 213.
  3. 3. Chen I.W., Wang Y. // Appl. Phys. Lett. 1999. V. 75. P. 4186. https://doi.org/10.1063/1.125577
  4. 4. Chen I.W., Wang I. // Ferroelectrics. 1998. V. 206. P. 245. https://doi.org/10.1080/00150199808009162
  5. 5. Belov A.Yu., Kreher W.S., Nicolai M. // Ferroelectrics. 2009. V. 391. P. 42. https://doi.org/10.1080/00150190903001128
  6. 6. Belov A.Yu., Kreher W.S. // Ferroelectrics. 2009. V. 391. P. 12. https://doi.org/10.1080/00150190903001052
  7. 7. Belov A.Yu., Kreher W.S. // Ferroelectrics. 2007. V. 351. P. 79. https://doi.org/10.1080/00150190701353093
  8. 8. Viola G., Chong K.B., Guiu F., Reece M.J. // J. Appl. Phys. 2014. V. 115. P. 034106. https://doi.org/10.1063/1.4856235
  9. 9. Du X., Chen I.W. // Mater. Res. Soc. Symp. Proc. 1998. V. 493. P. 311. https://doi.org/10.1557/PROC-493-311
  10. 10. Nam S.M., Kil Y.B., Wada S., Tsurumi T. // Jpn. J. Appl. Phys. 2003. V. 42. № 12B. P. L1519. https://doi.org/10.1143/JJAP.42.L1519
  11. 11. Tsurumi T., Num S.M., Kil Y.B., Wada S. // Ferro-electrics. 2001. V. 259. P. 43. https://doi.org/10.1080/00150190108008714
  12. 12. Lawless W.N. // Phys. Rev. B. 1978. V. 17. P. 1458. https://doi.org/10.1103/PhysRevB.17.1458
  13. 13. Jung D.J., Dawber M., Scott J.F. et al. // Integr. Ferroelectr. 2002. V. 48. P. 59. https://doi.org/10.1080/10584580215437
  14. 14. Mulaosmanovic H., Ocker J., Müller S. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 3792. https://doi.org/10.1021/acsami.6b13866
  15. 15. Borowiak A.S., Garcia-Sanchez A., Mercone S. // 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE. New York, 2016. P. 1. https://doi.org/10.1109/ISAF.2016.7578088
  16. 16. Белов А.Ю. // Письма в ЖЭТФ. 2018. Т. 108. С. 225.
  17. 17. Landauer R. // J. Appl. Phys. 1957. V. 28. P. 227. https://doi.org/10.1063/1.1722712
  18. 18. Tagantsev A.K., Stolichnov I., Setter N. // Phys. Rev. B. 2002. V. 66. P. 214109. https://doi.org/10.1103/PhysRevB.66.214109
  19. 19. Belov A.Yu. // Ferroelectrics. 2019. V. 544. P. 27. https://doi.org/10.1080/00150193.2019.1598180
  20. 20. Belov A.Yu. // Ferroelectrics. 2022. V. 590. P. 19. https://doi.org/10.1080/00150193.2022.2037935
  21. 21. Belov A.Yu. // Mater. Phys. Mech. 2024. V. 52. P. 18. https://doi.org/10.18149/MPM.5212024_2
  22. 22. Belov A.Yu. // Ferroelectrics. 2025. V. 619. P. 25. https://doi.org/10.1080/00150193.2024.2327956
  23. 23. Barenblatt G.I. // Adv. Appl. Mech. 1962. V. 7. P. 55. https://doi.org/10.1016/S0065-2156 (08)70121-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library